Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21265890

ABSTRACT

Respiratory infections are the major cause of death from infectious disease worldwide. Multiplexed diagnostic approaches are essential as many respiratory viruses have indistinguishable symptoms. We created self-assembled DNA nanobait that can simultaneously identify multiple short RNA targets. The nanobait approach relies on specific target selection via toehold-mediated strand displacement and rapid read-out via nanopore sensing. Here, we show this platform can concurrently identify several common respiratory viruses, detecting a panel of short targets of viral nucleic acids from multiple viruses. Our nanobait can be easily reprogrammed to discriminate viral variants, as we demonstrated for several key SARS-CoV-2 variants with single-nucleotide resolution. Lastly, we show that nanobait discriminates between samples extracted from oropharyngeal swabs from negative and positive SARS-CoV-2 patients without pre-amplification. Our system allows for multiplexed identification of native RNA molecules, providing a new scalable approach for diagnostics of multiple respiratory viruses in a single assay.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21263684

ABSTRACT

BackgroundThe COVID-19 pandemic has overwhelmed the respiratory isolation capacity in hospitals; many wards lacking high-frequency air changes have been repurposed for managing patients infected with SARS-CoV-2 requiring either standard or intensive care. Hospital-acquired COVID-19 is a recognised problem amongst both patients and staff, with growing evidence for the relevance of airborne transmission. This study examined the effect of air filtration and ultra-violet (UV) light sterilisation on detectable airborne SARS-CoV-2 and other microbial bioaerosols. MethodsWe conducted a crossover study of portable air filtration and sterilisation devices in a repurposed surge COVID ward and surge ICU. National Institute for Occupational Safety and Health (NIOSH) cyclonic aerosol samplers and PCR assays were used to detect the presence of airborne SARS-CoV-2 and other microbial bioaerosol with and without air/UV filtration. ResultsAirborne SARS-CoV-2 was detected in the ward on all five days before activation of air/UV filtration, but on none of the five days when the air/UV filter was operational; SARS-CoV-2 was again detected on four out of five days when the filter was off. Airborne SARS-CoV-2 was infrequently detected in the ICU. Filtration significantly reduced the burden of other microbial bioaerosols in both the ward (48 pathogens detected before filtration, two after, p=0.05) and the ICU (45 pathogens detected before filtration, five after p=0.05). ConclusionsThese data demonstrate the feasibility of removing SARS-CoV-2 from the air of repurposed surge wards and suggest that air filtration devices may help reduce the risk of hospital-acquired SARS-CoV-2. FundingWellcome Trust, MRC, NIHR

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21260360

ABSTRACT

Prominent early features of COVID-19 include severe, often clinically silent, hypoxia and a pronounced reduction in B cells, the latter important in defence against SARS-CoV-2. This brought to mind the phenotype of mice with VHL-deficient B cells, in which Hypoxia-Inducible Factors are constitutively active, suggesting hypoxia might drive B cell abnormalities in COVID-19. We demonstrated the breadth of early and persistent defects in B cell subsets in moderate/severe COVID-19, including reduced marginal zone-like, memory and transitional B cells, changes we also observed in B cell VHL-deficient mice. This was corroborated by hypoxia-related transcriptional changes in COVID-19 patients, and by similar B cell abnormalities in mice kept in hypoxic conditions, including reduced marginal zone and germinal center B cells. Thus hypoxia might contribute to B cell pathology in COVID-19, and in other hypoxic states. Through this mechanism it may impact on COVID-19 outcome, and be remediable through early oxygen therapy.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-446781

ABSTRACT

Prevention of SARS-CoV-2 entry in cells through the modulation of viral host receptors, such as ACE2, could represent a new therapeutic approach complementing vaccination. However, the mechanisms controlling ACE2 expression remain elusive. Here, we identify the farnesoid X receptor (FXR) as a direct regulator of ACE2 transcription in multiple COVID19-affected tissues, including the gastrointestinal and respiratory systems. We demonstrate that FXR antagonists, including the over-the-counter compound z-guggulsterone (ZGG) and the off-patent drug ursodeoxycholic acid (UDCA), downregulate ACE2 levels, and reduce susceptibility to SARS-CoV-2 infection in lung, cholangiocyte and gut organoids. We then show that therapeutic levels of UDCA downregulate ACE2 in human organs perfused ex situ and reduce SARS-CoV-2 infection ex vivo. Finally, we perform a retrospective study using registry data and identify a correlation between UDCA treatment and positive clinical outcomes following SARS-CoV-2 infection, including hospitalisation, ICU admission and death. In conclusion, we identify a novel function of FXR in controlling ACE2 expression and provide evidence that this approach could be beneficial for reducing SARS-CoV-2 infection, thereby paving the road for future clinical trials.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20248765

ABSTRACT

In a study of 207 SARS-CoV2-infected individuals with a range of severities followed over 12 weeks from symptom onset, we demonstrate that an early robust bystander CD8 T cell immune response, without systemic inflammation, is characteristic of asymptomatic or mild disease. Those presenting to hospital had delayed bystander responses and systemic inflammation already evident at around symptom onset. Such early evidence of inflammation suggests immunopathology may be inevitable in some individuals, or that preventative intervention might be needed before symptom onset. Viral load does not correlate with the development of this pathological response, but does with its subsequent severity. Immune recovery is complex, with profound persistent cellular abnormalities correlating with a change in the nature of the inflammatory response, where signatures characteristic of increased oxidative phosphorylation and reactive-oxygen species-associated inflammation replace those driven by TNF and IL-6. These late immunometabolic inflammatory changes and unresolved immune defects may have clinical implications.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-21249196

ABSTRACT

BackgroundNew data streams are being used to track the pandemic of SARS-CoV-2, including genomic data which provides insights into patterns of importation and spatial spread of the virus, as well as population mobility data obtained from mobile phones. Here, we analyse the emergence and outbreak trajectory of SARS-CoV-2 in Bangladesh using these new data streams, and identify mass population movements as a key early event driving the ongoing epidemic. MethodsWe sequenced complete genomes of 67 SARS-CoV-2 samples (March-July 2020) and combined this dataset with 324 genomes from Bangladesh. For phylogenetic context, we also used 68,000 GISAID genomes collected globally. We paired this genomic data with population mobility information from Facebook and three mobile phone operators. FindingsThe majority (85%) of the Bangladeshi sequenced isolates fall into either pangolin lineage B.1.36 (8%), B.1.1 (19%) or B.1.1.25 (58%). Bayesian time-scaled phylogenetic analysis predicted SARS-COV-2 first appeared in mid-February, through international introductions. The first case was reported on March 8th. This pattern of repeated international introduction changed at the end of March when three discrete lineages expanded and spread clonally across Bangladesh. The shifting pattern of viral diversity across Bangladesh is reflected in the mobility data which shows the mass migration of people from cities to rural areas at the end of March, followed by frequent travel between Dhaka and the rest of the country during the following months. InterpretationIn Bangladesh, population mobility out of Dhaka as well as frequent travel from urban hotspots to rural areas resulted in rapid country-wide dissemination of SARS-CoV-2. The strains in Bangladesh reflect the local expansion of global lineages introduced early from international travellers to and from major international travel hubs. Importantly, the Bangladeshi context is consistent with epidemiologic and phylogenetic findings globally. Bangladesh is one of the few countries in the world with a rich history of conducting mass vaccination campaigns under complex circumstances. Combining genomics and these new data streams should allow population movements to be modelled and anticipated rendering Bangladesh extremely well prepared to immunize citizens rapidly. Based on our genomics data and the countrys successful immunization history, vaccines becoming available globally will be suitable for implementation in Bangladesh while ongoing genomic surveillance is conducted to monitor for new variants of the virus. FundingGovernment of Bangladesh, Bill and Melinda Gates Foundation, Wellcome Trust. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSThe emergence of SARS-CoV-2, leading to the COVID-19 pandemic, has motivated all countries in the world to obtain high resolution data on the virus. Globally over 300,000 strains have been sequenced and information made available in GISAID. Within the first 100 days of the emergence of SARS-CoV-2, genomic analysis from different countries led to the development of vaccines which have now reached market. Information on the prevailing genotypes of SARS-CoV-2 since introduction is needed in low and middle-income countries (LMICs), including Bangladesh, in order to determine the suitability of therapeutics and vaccines in the pipeline and help vaccine deployment. Added value of this studyWe sequenced SARS-CoV-2 genomes from strains that were prospectively collected during the height of the pandemic and combined these genomic data with mobility data to comprehensively describe i) how repeated international importations of SARS-CoV-2 were ultimately linked to nationwide spread, ii) 85% of strains belonged to the Pangolin lineages B.1.1, B.1.1.25 and B.1.36 and that similar mutation rates were observed as seen globally iii) the switch in genomic dynamics of SARS-CoV-2 coincided with mass migration out of cities to the rest of the country. We have assessed the contributions of population mobility on the maintenance and spread of clonal lineages of SARS-CoV-2. This is the first time these data types have been combined to look at the spread of this virus nationally. Implications of all the available evidenceSARS-CoV-2 genomic diversity and mutation rate in Bangladesh is comparable to strains circulating globally. Notably, the data on the genomic changes of SARS-CoV-2 in Bangladesh is reassuring, suggesting that immunotherapeutic and vaccines being developed globally should also be suitable for this population. Since Bangladesh already has extensive experience of conducting mass vaccination campaigns, such as the rollout of the oral Cholera vaccine, experience of developing and using new data streams will enable efficient and targeted immunization of the population in 2021 with COVID-19 vaccine(s).

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20220699

ABSTRACT

BackgroundThe COVID-19 pandemic continues to grow at an unprecedented rate. Healthcare workers (HCWs) are at higher risk of SARS-CoV-2 infection than the general population but risk factors for HCW infection are not well described. MethodsWe conducted a prospective sero-epidemiological study of HCWs at a UK teaching hospital using a SARS-CoV-2 immunoassay. Risk factors for seropositivity were analysed using multivariate logistic regression. Findings410/5,698 (7{middle dot}2%) staff tested positive for SARS-CoV-2 antibodies. Seroprevalence was higher in those working in designated COVID-19 areas compared with other areas (9{middle dot}47% versus 6{middle dot}16%) Healthcare assistants (aOR 2{middle dot}06 [95%CI 1{middle dot}14-3{middle dot}71]; p=0{middle dot}016) and domestic and portering staff (aOR 3{middle dot}45 [95% CI 1{middle dot}07-11{middle dot}42]; p=0{middle dot}039) had significantly higher seroprevalence than other staff groups after adjusting for age, sex, ethnicity and COVID-19 working location. Staff working in acute medicine and medical sub-specialities were also at higher risk (aOR 2{middle dot}07 [95% CI 1{middle dot}31-3{middle dot}25]; p<0{middle dot}002). Staff from Black, Asian and minority ethnic (BAME) backgrounds had an aOR of 1{middle dot}65 (95% CI 1{middle dot}32 - 2{middle dot}07; p<0{middle dot}001) compared to white staff; this increased risk was independent of COVID-19 area working. The only symptoms significantly associated with seropositivity in a multivariable model were loss of sense of taste or smell, fever and myalgia; 31% of staff testing positive reported no prior symptoms. InterpretationRisk of SARS-CoV-2 infection amongst HCWs is heterogeneous and influenced by COVID-19 working location, role, age and ethnicity. Increased risk amongst BAME staff cannot be accounted for solely by occupational factors. FundingWellcome Trust, Addenbrookes Charitable Trust, National Institute for Health Research, Academy of Medical Sciences, the Health Foundation and the NIHR Cambridge Biomedical Research Centre. Research in context Evidence before this studySpecific risk factors for SARS-CoV-2 infection in healthcare workers (HCWs) are not well defined. Additionally, it is not clear how population level risk factors influence occupational risk in defined demographic groups. Only by identifying these factors can we mitigate and reduce the risk of occupational SARS-CoV-2 infection. We performed a review of the evidence for HCW-specific risk factors for SARS-CoV-2 infection. We searched PubMed with the terms "SARS-CoV-2" OR "COVID-19" AND "Healthcare worker" OR "Healthcare Personnel" AND "Risk factor" to identify any studies published in any language between December 2019 and September 2020. The search identified 266 studies and included a meta-analysis and two observational studies assessing HCW cohort seroprevalence data. Seroprevalence and risk factors for HCW infections varied between studies, with contradictory findings. In the two serological studies, one identified a significant increased risk of seroprevalence in those working with COVID-19 patients (Eyre et al 2020), as well as associations with job role and department. The other study (Dimcheff et al 2020) found no significant association between seropositivity and any identified demographic or occupational factor. A meta-analysis of HCW (Gomez-Ochoa et al 2020) assessed >230,000 participants as a pooled analysis, including diagnoses by both RT-PCR and seropositivity for SARS-CoV-2 antibodies and found great heterogeneity in study design and reported contradictory findings. Of note, they report a seropositivity rate of 7% across all studies reporting SARS-CoV-2 antibodies in HCWs. Nurses were the most frequently affected healthcare personnel and staff working in non-emergency inpatient settings were the most frequently affected group. Our search found no prospective studies systematically evaluating HCW specific risk factors based entirely on seroprevalence data. Added value of this studyOur prospective cohort study of almost 6,000 HCWs at a large UK teaching hospital strengthens previous findings from UK-based cohorts in identifying an increased risk of SARS-CoV-2 exposure amongst HCWs. Specifically, factors associated with SARS-CoV-2 exposure include caring for confirmed COVID-19 cases and identifying as being within specific ethnic groups (BAME staff). We further delineated the risk amongst BAME staff and demonstrate that occupational factors alone do not account for all of the increased risk amongst this group. We demonstrate for the first time that healthcare assistants represent a key at-risk occupational group, and challenge previous findings of significantly higher risk amongst nursing staff. Seroprevalence in staff not working in areas with confirmed COVID-19 patients was only marginally higher than that of the general population within the same geographical region. This observation could suggest the increased risk amongst HCWs arises through occupational exposure to confirmed cases and could account for the overall higher seroprevalence in HCWs, rather than purely the presence of staff in healthcare facilities. Over 30% of seropositive staff had not reported symptoms consistent with COVID-19, and in those who did report symptoms, differentiating COVID-19 from other causes based on symptom data alone was unreliable. Implications of all the available evidenceInternational efforts to reduce the risk of SARS-CoV-2 infection amongst HCWs need to be prioritised. The risk of SARS-CoV-2 infection amongst HCWs is heterogenous but also follows demonstrable patterns. Potential mechanisms to reduce the risk for staff working in areas with confirmed COVID-19 patients include improved training in hand hygiene and personal protective equipment (PPE), better access to high quality PPE, and frequent asymptomatic testing. Wider asymptomatic testing in healthcare facilities has the potential to reduce spread of SARS-CoV-2 within hospitals, thereby reducing patient and staff risk and limiting spread between hospitals and into the wider community. The increased risk of COVID-19 amongst BAME staff cannot be explained by purely occupational factors; however, the increased risk amongst minority ethnic groups identified here was stark and necessitates further evaluation.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20219642

ABSTRACT

Identifying linked cases of infection is a key part of the public health response to viral infectious disease. Viral genome sequence data is of great value in this task, but requires careful analysis, and may need to be complemented by additional types of data. The Covid-19 pandemic has highlighted the urgent need for analytical methods which bring together sources of data to inform epidemiological investigations. We here describe A2B-COVID, an approach for the rapid identification of linked cases of coronavirus infection. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and novel approaches to genome sequence data to assess whether or not cases of infection are consistent or inconsistent with linkage via transmission. We apply our method to analyse and compare data collected from two wards at Cambridge University Hospitals, showing qualitatively different patterns of linkage between cases on designated Covid-19 and non-Covid-19 wards. Our method is suitable for the rapid analysis of data from clinical or other potential outbreak settings.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-20139873

ABSTRACT

BackgroundPandemic COVID-19 caused by the coronavirus SARS-CoV-2 has a high incidence of patients with severe acute respiratory syndrome (SARS). Many of these patients require admission to an intensive care unit (ICU) for invasive artificial ventilation and are at significant risk of developing a secondary, ventilator-associated pneumonia (VAP). ObjectivesTo study the incidence of VAP, as well as differences in secondary infections, and bacterial lung microbiome composition of ventilated COVID-19 and non-COVID-19 patients. MethodsIn this prospective observational study, we compared the incidence of VAP and secondary infections using a combination of a TaqMan multi-pathogen array and microbial culture. In addition, we determined the lung microbime composition using 16S RNA analyisis. The study involved eighteen COVID-19 and seven non-COVID-19 patients receiving invasive ventilation in three ICUs located in a single University teaching hospital between April 13th 2020 and May 7th 2020. ResultsWe observed a higher percentage of confirmed VAP in COVID-19 patients. However, there was no statistical difference in the detected organisms or pulmonary microbiome when compared to non-COVID-19 patients. ConclusionCOVID-19 makes people more susceptible to developing VAP, partly but not entirely due to the increased duration of ventilation. The pulmonary dysbiosis caused by COVID-19, and the array of secondary infections observed are similar to that seen in critically ill patients ventilated for other reasons.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20133157

ABSTRACT

BackgroundRapid COVID-19 diagnosis in hospital is essential for patient management and identification of infectious patients to limit the potential for nosocomial transmission. The diagnosis of infection is complicated by 30-50% of COVID-19 hospital admissions with nose/throat swabs testing negative for SARS-CoV-2 nucleic acid, frequently after the first week of illness when SARS-CoV-2 antibody responses become detectable. We assessed the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease in the emergency department. MethodsWe developed (i) an in vitro neutralization assay using a lentivirus expressing a genome encoding luciferase and pseudotyped with spike (S) protein and (ii) an ELISA test to detect IgG antibodies to nucleocapsid (N) and S proteins from SARS-CoV-2. We tested two lateral flow rapid fingerprick tests with bands for IgG and IgM. We then prospectively recruited participants with suspected moderate to severe COVID-19 and tested for SARS-CoV-2 nucleic acid in a combined nasal/throat swab using the standard laboratory RT-PCR and a validated rapid POC nucleic acid amplification (NAAT) test. Additionally, serum collected at admission was retrospectively tested by in vitro neutralisation, ELISA and the candidate POC antibody tests. We evaluated the performance of the individual and combined rapid POC diagnostic tests against a composite reference standard of neutralisation and standard laboratory based RT-PCR. Results45 participants had specimens tested for nucleic acid in nose/throat swabs as well as stored sera for antibodies. Using the composite reference standard, prevalence of COVID-19 disease was 53.3% (24/45). Median age was 73.5 (IQR 54.0-86.5) years in those with COVID-19 disease by our reference standard and 63.0 (IQR 41.0-72.0) years in those without disease. The overall detection rate by rapid NAAT was 79.2% (95CI 57.8-92.9%), decreasing from 100% (95% CI 65.3-98.6%) in days 1-4 to 50.0% (95% CI 11.8-88.2) for days 9-28 post symptom onset. Correct identification of COVID-19 with combined rapid POC diagnostic tests was 100% (95CI 85.8-100%) with a false positive rate of 5.3-14.3%, driven by POC LFA antibody tests. ConclusionsCombined POC tests have the potential to transform our management of COVID-19, including inflammatory manifestations later in disease where nucleic acid test results are negative. A rapid combined approach will also aid recruitment into clinical trials and in prescribing therapeutics, particularly where potentially harmful immune modulators (including steroids) are used.

11.
Preprint in English | bioRxiv | ID: ppbiorxiv-152835

ABSTRACT

The spike (S) protein of SARS-CoV-2 mediates receptor binding and cell entry and is the dominant target of the immune system. S exhibits substantial conformational flexibility. It transitions from closed to open conformations to expose its receptor binding site, and subsequently from prefusion to postfusion conformations to mediate fusion of viral and cellular membranes. S protein derivatives are components of vaccine candidates and diagnostic assays, as well as tools for research into the biology and immunology of SARS-CoV-2. Here we have designed mutations in S which allow production of thermostable, crosslinked, S protein trimers that are trapped in the closed, pre-fusion, state. We have determined the structures of crosslinked and non-crosslinked proteins, identifying two distinct closed conformations of the S trimer. We demonstrate that the designed, thermostable, closed S trimer can be used in serological assays. This protein has potential applications as a reagent for serology, virology and as an immunogen.

12.
Preprint in English | medRxiv | ID: ppmedrxiv-20082909

ABSTRACT

Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3-week period (April 2020), 1,032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19) >7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B{middle dot}1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff. Appendix: The CITIID-NIHR COVID-19 BioResource CollaborationO_ST_ABSPrincipal InvestigatorsC_ST_ABSStephen Baker, John Bradley, Gordon Dougan, Ian Goodfellow, Ravi Gupta, Paul J. Lehner, Paul A. Lyons, Nicholas J. Matheson, Kenneth G.C. Smith, M. Estee Torok, Mark Toshner, Michael P. Weekes Infectious Diseases DepartmentNicholas K. Jones, Lucy Rivett, Matthew Routledge, Dominic Sparkes, Ben Warne SARS-CoV-2 testing teamJosefin Bartholdson Scott, Claire Cormie, Sally Forrest, Harmeet Gill, Iain Kean, Mailis Maes, Joana Pereira-Dias, Nicola Reynolds, Sushmita Sridhar, Michelle Wantoch, Jamie Young COG-UK Cambridge Sequencing TeamSarah Caddy, Laura Caller, Theresa Feltwell, Grant Hall, William Hamilton, Myra Hosmillo, Charlotte Houldcroft, Aminu Jahun, Fahad Khokhar, Luke Meredith, Anna Yakovleva NIHR BioResourceHelen Butcher, Daniela Caputo, Debra Clapham-Riley, Helen Dolling, Anita Furlong, Barbara Graves, Emma Le Gresley, Nathalie Kingston, Sofia Papadia, Hannah Stark, Kathleen E. Stirrups, Jennifer Webster Research nursesJoanna Calder, Julie Harris, Sarah Hewitt, Jane Kennet, Anne Meadows, Rebecca Rastall, Criona O,Brien, Jo Price, Cherry Publico, Jane Rowlands, Valentina Ruffolo, Hugo Tordesillas NIHR Cambridge Clinical Research FacilityKaren Brookes, Laura Canna, Isabel Cruz, Katie Dempsey, Anne Elmer, Naidine Escoffery, Stewart Fuller, Heather Jones, Carla Ribeiro, Caroline Saunders, Angela Wright Cambridge Cancer Trial CentreRutendo Nyagumbo, Anne Roberts Clinical Research Network EasternAshlea Bucke, Simone Hargreaves, Danielle Johnson, Aileen Narcorda, Debbie Read, Christian Sparke, Lucy Warboys Administrative staff, CUHKirsty Lagadu, Lenette Mactavous CUH NHS Foundation TrustTim Gould, Tim Raine, Ashley Shaw Cambridge Cancer Trials CentreClaire Mather, Nicola Ramenatte, Anne-Laure Vallier Legal/EthicsMary Kasanicki CUH Improvement and Transformation TeamPenelope-Jane Eames, Chris McNicholas, Lisa Thake Clinical Microbiology & Public Health Laboratory (PHE): Neil Bartholomew, Nick Brown, Martin Curran, Surendra Parmar, Hongyi Zhang Occupational HealthAilsa Bowring, Mark Ferris, Geraldine Martell, Natalie Quinnell, Giles Wright, Jo Wright Health and SafetyHelen Murphy Department of Medicine Sample LogisticsBenjamin J. Dunmore, Ekaterina Legchenko, Stefan Graf, Christopher Huang, Josh Hodgson, Kelvin Hunter, Jennifer Martin, Federica Mescia, Ciara ODonnell, Linda Pointon, Joy Shih, Rachel Sutcliffe, Tobias Tilly, Zhen Tong, Carmen Treacy, Jennifer Wood Department of Medicine Sample Processing and Acquisition: Laura Bergamaschi, Ariana Betancourt, Georgie Bowyer, Aloka De Sa, Maddie Epping, Andrew Hinch, Oisin Huhn, Isobel Jarvis, Daniel Lewis, Joe Marsden, Simon McCallum, Francescsa Nice, Ommar Omarjee, Marianne Perera, Nika Romashova, Mateusz Strezlecki, Natalia Savoinykh Yarkoni, Lori Turner Epic team/other computing supportBarrie Bailey, Afzal Chaudhry, Rachel Doughton, Chris Workman Statistics/modellingRichard J. Samworth, Caroline Trotter

13.
Preprint in English | medRxiv | ID: ppmedrxiv-20095687

ABSTRACT

BackgroundThe burden and impact of healthcare-associated COVID-19 infections is unknown. We aimed to examine the utility of rapid sequencing of SARS-CoV-2 combined with detailed epidemiological analysis to investigate healthcare-associated COVID-19 infections and to inform infection control measures. MethodsWe set up rapid viral sequencing of SARS-CoV-2 from PCR-positive diagnostic samples using nanopore sequencing, enabling sample-to-sequence in less than 24 hours. We established a rapid review and reporting system with integration of genomic and epidemiological data to investigate suspected cases of healthcare-associated COVID-19. ResultsBetween 13 March and 24 April 2020 we collected clinical data and samples from 5191 COVID-19 patients in the East of England. We sequenced 1000 samples, producing 747 complete viral genomes. We conducted combined epidemiological and genomic analysis of 299 patients at our hospital and identified 26 genomic clusters involving 114 patients. 66 cases (57.9%) had a strong epidemiological link and 15 cases (13.2%) had a plausible epidemiological link. These results were fed back to clinical, infection control and hospital management teams, resulting in infection control interventions and informing patient safety reporting. ConclusionsWe established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and demonstrated the benefit of combined genomic and epidemiological analysis for the investigation of healthcare-associated COVID-19 infections. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection control interventions to reduce further healthcare-associated infections.

14.
Preprint in English | bioRxiv | ID: ppbiorxiv-041319

ABSTRACT

The COVID-19 pandemic is expanding at an unprecedented rate. As a result, diagnostic services are stretched to their limit, and there is a clear need for the provision of additional diagnostic capacity. Academic laboratories, many of which are closed due to governmental lockdowns, may be in a position to support local screening capacity by adapting their current laboratory practices. Here, we describe the process of developing a SARS-Cov2 diagnostic workflow in a conventional academic Containment Level 2 (CL2) laboratory. Our outline includes simple SARS-Cov2 deactivation upon contact, the methods for a quantitative real-time reverse transcriptase PCR (qRT-PCR) detecting SARS-Cov2, a description of process establishment and validation, and some considerations for establishing a similar workflow elsewhere. This was achieved under challenging circumstances through the collaborative efforts of scientists, clinical staff, and diagnostic staff to mitigate to the ongoing crisis. Within 14 days, we created a validated COVID-19 diagnostics service for healthcare workers in our local hospital. The described methods are not exhaustive, but we hope may offer support to other academic groups aiming to set up something comparable in a short time frame.

SELECTION OF CITATIONS
SEARCH DETAIL
...