Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20248797

ABSTRACT

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a high risk of transmission in close-contact indoor settings, which may include households. Prior studies have found a wide range of household secondary attack rates and may contain biases due to simplifying assumptions about transmission variability and test accuracy. MethodsWe compiled serological SARS-CoV-2 antibody test data and prior SARS-CoV-2 test reporting from members of 9,224 Utah households. We paired these data with a probabilistic model of household importation and transmission. We calculated a maximum likelihood estimate of the importation probability, mean and variability of household transmission probability, and sensitivity and specificity of test data. Given our household transmission estimates, we estimated the threshold of non-household transmission required for epidemic growth in the population. ResultsWe estimated that individuals in our study households had a 0.41% (95% CI 0.32% - 0.51%) chance of acquiring SARS-CoV-2 infection outside their household. Our household secondary attack rate estimate was 36% (27% - 48%), substantially higher than the crude estimate of 16% unadjusted for imperfect serological test specificity and other factors. We found evidence for high variability in individual transmissibility, with higher probability of no transmissions or many transmissions compared to standard models. With household transmission at our estimates, the average number of non-household transmissions per case must be kept below 0.41 (0.33 - 0.52) to avoid continued growth of the pandemic in Utah. ConclusionsOur findings suggest that crude estimates of household secondary attack rate based on serology data without accounting for false positive tests may underestimate the true average transmissibility, even when test specificity is high. Our finding of potential high variability (overdispersion) in transmissibility of infected individuals is consistent with characterizing SARS-CoV-2 transmission being largely driven by superspreading from a minority of infected individuals. Mitigation efforts targeting large households and other locations where many people congregate indoors might curb continued spread of the virus.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20219907

ABSTRACT

This projects aim was to generate an unbiased estimate of the incidence of SARS-CoV-2 infection in four urban counties in Utah. A multi-stage sampling design was employed to randomly select community-representative participants 12 years and over. Between May 4 and June 30, 2020, surveys were completed and sera drawn from 8,108 individuals belonging to 5,125 households. A qualitative chemiluminescent microparticle immunoassay was used to detect the presence of IgG antibody to SARS-CoV-2. The overall prevalence of IgG antibody to SARS-CoV-2 was estimated at 0.8%. The estimated seroprevalence-to-case count ratio was 2.4, corresponding to a detection fraction of 42%. Only 0.2% of individuals who had a nasopharyngeal swab collected were reverse transcription polymerase chain reaction (RT-PCR) positive. The prevalence of antibodies to SARS-CoV-2 in Utah urban areas between May and June was low and the prevalence of positive RT-PCR even lower. The detection fraction for COVID-19 in Utah was comparatively high. Article SummaryProbability-based sampling provides an effective method for robust estimates of community-based SARS-CoV-2 seroprevalence and detection fraction among urban populations in Utah.

SELECTION OF CITATIONS
SEARCH DETAIL
...