Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-416750

ABSTRACT

T cells are involved in control of SARS-CoV-2 infection. To establish the patterns of immunodominance of different SARS-CoV-2 antigens, and precisely measure virus-specific CD4+ and CD8+ T cells, we studied epitope-specific T cell responses of approximately 100 convalescent COVID-19 cases. The SARS-CoV-2 proteome was probed using 1,925 peptides spanning the entire genome, ensuring an unbiased coverage of HLA alleles for class II responses. For HLA class I, we studied an additional 5,600 predicted binding epitopes for 28 prominent HLA class I alleles, accounting for wide global coverage. We identified several hundred HLA-restricted SARS-CoV-2-derived epitopes. Distinct patterns of immunodominance were observed, which differed for CD4+ T cells, CD8+ T cells, and antibodies. The class I and class II epitopes were combined into new epitope megapools to facilitate identification and quantification of SARS-CoV-2-specific CD4+ and CD8+ T cells.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20071423

ABSTRACT

BackgroundSARS-CoV-2, the cause of coronavirus disease 2019 (COVID-19), is associated with respiratory-related morbidity and mortality. Assays to detect virus-specific antibodies are important to understand the prevalence of infection and the course of the immune response. MethodologyQuantitative measurements of plasma or serum antibodies by luciferase immunoprecipitation assay systems (LIPS) to the nucleocapsid and spike proteins were analyzed in 100 cross-sectional or longitudinal samples from SARS-CoV-2-infected patients. A subset of samples was tested with and without heat inactivation. ResultsFifteen or more days after symptom onset, antibodies against SARS-CoV-2 nucleocapsid protein showed 100% sensitivity and 100% specificity, while antibodies to spike protein were detected with 91% sensitivity and 100% specificity. Neither antibody levels nor the rate of seropositivity were significantly reduced by heat inactivation of samples. Analysis of daily samples from six patients with COVID-19 showed anti-nucleocapsid and spike antibodies appearing between day 8 to day 14 after initial symptoms. Immunocompromised patients generally had a delayed antibody response to SARS-CoV-2 compared to immunocompetent patients. ConclusionsAntibody to the nucleocapsid protein of SARS-CoV-2 is more sensitive than spike protein antibody for detecting early infection. Analyzing heat-inactivated samples by LIPS is a safe and sensitive method for detecting SARS-CoV-2 antibodies.

SELECTION OF CITATIONS
SEARCH DETAIL
...