Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Am J Clin Nutr ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705358

ABSTRACT

The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition. Our view is that recent evidence is driving a more nuanced picture of the regulation of postprandial MPS by revealing a compelling dissociation between ingested leucine or plasma leucinemia and the magnitude of the postprandial MPS response. Much of this lack of coherence has arisen as experimental progress has demanded relevant studies move beyond reliance on isolated amino acids and proteins to use increasingly complex protein-rich meals, whole foods, and mixed meals. Our overreliance on the centrality of leucine in this field has been reflected in 2 recent systematic reviews. In this perspective, we propose a re-evaluation of the pre-eminent role of these leucine variables in the stimulation of postprandial MPS. We view the development of a more complex intellectual framework now a priority if we are to see continued progress concerning the mechanistic regulation of postprandial muscle protein turnover, but also consequential from an applied perspective when evaluating the value of novel dietary protein sources.

2.
J Nutr ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797481

ABSTRACT

BACKGROUND: Industrial processing can alter the structural complexity of dietary proteins and, potentially, their digestion and absorption upon ingestion. High-moisture extrusion (HME), a common processing method used to produce meat alternative products, affects in vitro digestion, but human data are lacking. We hypothesized that HME of a mycoprotein/pea protein blend would impair in vitro digestion and in vivo postprandial plasma amino acid availability. METHODS: In Study A, 9 healthy volunteers completed 2 experimental trials in a randomized, double-blind, crossover design. Participants consumed a beverage containing 25 g protein from a "dry" blend (CON) of mycoprotein/pea protein (39%/61%) or an HME content-matched blend (EXT). Arterialized venous blood samples were collected in the postabsorptive state and regularly over a 5-h postprandial period to assess plasma amino acid concentrations. In Study B, in vitro digestibility of the 2 beverages were assessed using bicinchoninic acid assay and optical fluorescence microscopy at baseline and during and following gastric and intestinal digestion using the INFOGEST model of digestion. RESULTS: Protein ingestion increased plasma total, essential (EAA), and branched-chain amino acid (BCAA) concentrations (time effect, P < 0.0001) but more rapidly and to a greater magnitude in the CON compared with the EXT condition (condition × time interaction, P < 0.0001). This resulted in greater plasma availability of EAA and BCAA concentrations during the early postprandial period (0-150 min). These data were corroborated by the in vitro approach, which showed greater protein availability in the CON (2150 ± 129 mg/mL) compared with the EXT (590 ± 41 mg/mL) condition during the gastric phase. Fluorescence microscopy revealed clear structural differences between the 2 conditions. CONCLUSIONS: These data demonstrate that HME delays in vivo plasma amino acid availability following ingestion of a mycoprotein/pea protein blend. This is likely due to impaired gastric phase digestion as a result of HME-induced aggregate formation in the pea protein. This trial was registered at clinicaltrials.gov as NCT05584358.

3.
Diabetologia ; 67(6): 1107-1113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38483543

ABSTRACT

AIMS/HYPOTHESIS: The aim of the present study was to conduct a randomised, placebo-controlled, double-blind, crossover trial to determine whether pre-meal ketone monoester ingestion reduces postprandial glucose concentrations in individuals with type 2 diabetes. METHODS: In this double-blind, placebo-controlled, crossover design study, ten participants with type 2 diabetes (age 59±1.7 years, 50% female, BMI 32±1 kg/m2, HbA1c 54±2 mmol/mol [7.1±0.2%]) were randomised using computer-generated random numbers. The study took place at the Nutritional Physiology Research Unit, University of Exeter, Exeter, UK. Using a dual-glucose tracer approach, we assessed glucose kinetics after the ingestion of a 0.5 g/kg body mass ketone monoester (KME) or a taste-matched non-caloric placebo before a mixed-meal tolerance test. The primary outcome measure was endogenous glucose production. Secondary outcome measures were total glucose appearance rate and exogenous glucose appearance rate, glucose disappearance rate, blood glucose, serum insulin, ß-OHB and NEFA levels, and energy expenditure. RESULTS: Data for all ten participants were analysed. KME ingestion increased mean ± SEM plasma beta-hydroxybutyrate from 0.3±0.03 mmol/l to a peak of 4.3±1.2 mmol/l while reducing 2 h postprandial glucose concentrations by ~18% and 4 h postprandial glucose concentrations by ~12%, predominately as a result of a 28% decrease in the 2 h rate of glucose appearance following meal ingestion (all p<0.05). The reduction in blood glucose concentrations was associated with suppressed plasma NEFA concentrations after KME ingestion, with no difference in plasma insulin concentrations between the control and KME conditions. Postprandial endogenous glucose production was unaffected by KME ingestion (mean ± SEM 0.76±0.15 and 0.88±0.10 mg kg-1 min-1 for the control and KME, respectively). No adverse effects of KME ingestion were observed. CONCLUSIONS/INTERPRETATION: KME ingestion appears to delay glucose absorption in adults with type 2 diabetes, thereby reducing postprandial glucose concentrations. Future work to explore the therapeutic potential of KME supplementation in type 2 diabetes is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT05518448. FUNDING: This project was supported by a Canadian Institutes of Health Research (CIHR) Project Grant (PJT-169116) and a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant (RGPIN-2019-05204) awarded to JPL and an Exeter-UBCO Sports Health Science Fund Project Grant awarded to FBS and JPL.


Subject(s)
Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2 , Ketones , Postprandial Period , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Female , Middle Aged , Blood Glucose/metabolism , Blood Glucose/drug effects , Male , Double-Blind Method , Ketones/blood , 3-Hydroxybutyric Acid/blood , Insulin/blood , Beverages
4.
Med Sci Sports Exerc ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38537270

ABSTRACT

PURPOSE: Whey protein ingestion is typically considered an optimal dietary strategy to maximize myofibrillar protein synthesis (MyoPS) following resistance exercise. While single source plant protein ingestion is typically less effective, at least partly, due to less favorable amino acid profiles, this could theoretically be overcome by blending plant-based proteins with complementary amino acid profiles. We compared the post-exercise MyoPS response following the ingestion of a novel plant-derived protein blend with an isonitrogenous bolus of whey protein. METHODS: Ten healthy, resistance trained, young adults (male/female: 8/2; age: 26 ± 6 y; BMI: 24 ± 3 kg·m-2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of bilateral leg resistance exercise before ingesting 32 g protein from whey (WHEY) or a plant protein blend (BLEND; 39.5% pea, 39.5% brown rice, 21.0% canola) in a randomized, double-blind crossover fashion. Blood and muscle samples were collected at rest, and 2 and 4 h after exercise and protein ingestion, to assess plasma amino acid concentrations, and postabsorptive and post-exercise MyoPS rates. RESULTS: Plasma essential amino acid availability over the 4 h postprandial post-exercise period was ~44% higher in WHEY compared with BLEND (P = 0.04). From equivalent postabsorptive values (WHEY, 0.042 ± 0.020%·h-1; BLEND, 0.043 ± 0.015%·h-1) MyoPS rates increased following exercise and protein ingestion (time effect; P < 0.001) over a 0-2 h (WHEY, 0.085 ± 0.037%·h-1; BLEND, 0.080 ± 0.037%·h-1) and 2-4 h (WHEY, 0.085 ± 0.036%·h-1; BLEND, 0.086 ± 0.034%·h-1) period, with no differences between conditions during either period or throughout the entire (0-4 h) postprandial period (time × condition interactions; all P > 0.05). CONCLUSIONS: Ingestion of a novel plant-based protein blend stimulates post-exercise MyoPS to an equivalent extent as a whey protein, demonstrating the utility of plant protein blends to optimize post-exercise skeletal muscle reconditioning.

5.
J Cachexia Sarcopenia Muscle ; 15(2): 603-614, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343303

ABSTRACT

BACKGROUND: Bed-rest (BR) of only a few days duration reduces muscle protein synthesis and induces skeletal muscle atrophy and insulin resistance, but the scale and juxtaposition of these events have not been investigated concurrently in the same individuals. Moreover, the impact of short-term exercise-supplemented remobilization (ESR) on muscle volume, protein turnover and leg glucose uptake (LGU) in humans is unknown. METHODS: Ten healthy males (24 ± 1 years, body mass index 22.7 ± 0.6 kg/m2) underwent 3 days of BR, followed immediately by 3 days of ESR consisting of 5 × 30 maximal voluntary single-leg isokinetic knee extensions at 90°/s each day. An isoenergetic diet was maintained throughout the study (30% fat, 15% protein and 55% carbohydrate). Resting LGU was calculated from arterialized-venous versus venous difference across the leg and leg blood flow during the steady-state of a 3-h hyperinsulinaemic-euglycaemic clamp (60 mU/m2/min) measured before BR, after BR and after remobilization. Glycogen content was measured in vastus lateralis muscle biopsy samples obtained before and after each clamp. Leg muscle volume (LMV) was measured using magnetic resonance imaging before BR, after BR and after remobilization. Cumulative myofibrillar protein fractional synthetic rate (FSR) and whole-body muscle protein breakdown (MPB) were measured over the course of BR and remobilization using deuterium oxide and 3-methylhistidine stable isotope tracers that were administered orally. RESULTS: Compared with before BR, there was a 45% decline in insulin-stimulated LGU (P < 0.05) after BR, which was paralleled by a reduction in insulin-stimulated leg blood flow (P < 0.01) and removal of insulin-stimulated muscle glycogen storage. These events were accompanied by a 43% reduction in myofibrillar protein FSR (P < 0.05) and a 2.5% decrease in LMV (P < 0.01) during BR, along with a 30% decline in whole-body MPB after 2 days of BR (P < 0.05). Myofibrillar protein FSR and LMV were restored by 3 days of ESR (P < 0.01 and P < 0.01, respectively) but not by ambulation alone. However, insulin-stimulated LGU and muscle glycogen storage were not restored by ESR. CONCLUSIONS: Three days of BR caused concurrent reductions in LMV, myofibrillar protein FSR, myofibrillar protein breakdown and insulin-stimulated LGU, leg blood flow and muscle glycogen storage in healthy, young volunteers. Resistance ESR restored LMV and myofibrillar protein FSR, but LGU and muscle glycogen storage remained depressed, highlighting divergences in muscle fuel and protein metabolism. Furthermore, ambulation alone did not restore LMV and myofibrillar protein FSR in the non-exercised contralateral limb, emphasizing the importance of exercise rehabilitation following even short-term BR.


Subject(s)
Glucose , Muscle, Skeletal , Male , Humans , Glucose/metabolism , Muscle, Skeletal/metabolism , Insulin/metabolism , Glycogen/metabolism , Muscle Proteins/metabolism
6.
Clin Nutr ; 43(3): 649-659, 2024 03.
Article in English | MEDLINE | ID: mdl-38306892

ABSTRACT

BACKGROUND: Substituting dietary meat and fish for mycoprotein, a fungal-derived food source rich in protein and fibre, decreases circulating cholesterol concentrations in laboratory-controlled studies. However, whether these findings can be translated to a home-based setting, and to decrease cholesterol concentrations in overweight and hypercholesterolemic individuals, remains to be established. OBJECTIVE: We investigated whether a remotely-delivered, home-based dietary intervention of mycoprotein-containing food products would affect various circulating cholesterol moieties and other markers of cardio-metabolic health in overweight (BMI >27.5 kg⋅m-2) and hypercholesterolaemic (>5.0 mmol⋅L-1) adults. METHODS: Seventy-two participants were randomized into a controlled, parallel-group trial conducted in a free-living setting, in which they received home deliveries of either meat/fish control products (CON; n = 39; BMI 33 ± 1 kg⋅m-2; 13 males, 26 females) or mycoprotein-containing food products (MYC; n = 33; BMI 32 ± 1 kg⋅m-2; 13 males, 20 females) for 4 weeks. Fingertip blood samples were collected and sent via postal service before and after the dietary intervention period and analysed for concentrations of serum lipids, blood glucose and c-peptide. RESULTS: Serum total cholesterol concentrations were unchanged throughout the intervention in CON, but decreased by 5 ± 2 % in MYC (from 5.4 ± 0.2 to 5.1 ± 0.2 mmol⋅L-1; P < 0.05). Serum low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol concentrations were also unchanged in CON, but decreased in MYC by 10 ± 3 % and 6 ± 2 % (both by 0.3 ± 0.1 mmol⋅L-1; P < 0.05). Serum high-density lipoprotein cholesterol and free triglyceride concentrations were unaffected in CON or MYC. Post-intervention, MYC displayed lower mean blood glucose (3.7 ± 0.2 versus 4.3 ± 0.2 mmol⋅L-1) and c-peptide (779 ± 76 vs. 1064 ± 86 pmol⋅L-1) concentrations (P < 0.05) vs. CON. CONCLUSIONS: We show that a home-based dietary intervention of mycoprotein-containing food products effectively lowers circulating cholesterol concentrations in overweight, hypercholesterolemic adults. This demonstrates that mycoprotein consumption is a feasible and ecologically valid dietary strategy to improve markers of cardio-metabolic health in an at-risk population under free living conditions. CLINICAL TRIAL REGISTRATION: NCT04773483 (https://classic. CLINICALTRIALS: gov/ct2/show/NCT04773483).


Subject(s)
Blood Glucose , Independent Living , Adult , Female , Animals , Male , Humans , C-Peptide , Overweight , Meat
7.
Am J Physiol Endocrinol Metab ; 326(3): E277-E289, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38231001

ABSTRACT

Although the mechanisms underpinning short-term muscle disuse atrophy and associated insulin resistance remain to be elucidated, perturbed lipid metabolism might be involved. Our aim was to determine the impact of acipimox administration [i.e., pharmacologically lowering circulating nonesterified fatty acid (NEFA) availability] on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age: 22 ± 1 years; body mass index: 24.0 ± 0.6 kg·m-2) underwent 2 days forearm immobilization with placebo (PLA; n = 9) or acipimox (ACI; 250 mg Olbetam; n = 9) ingestion four times daily. Before and after immobilization, whole body glucose disposal rate (GDR), forearm glucose uptake (FGU; i.e., muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinemic-hyperaminoacidemic-euglycemic clamp conditions using forearm balance and l-[ring-2H5]-phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, more so in ACI (from 53 ± 8 to 12 ± 5 µmol·min-1) than PLA (from 52 ± 8 to 38 ± 13 µmol·min-1; P < 0.05). In ACI only, and in contrast to our hypothesis, fasting arterialized NEFA concentrations were elevated to 1.3 ± 0.1 mmol·L-1 postimmobilization (P < 0.05), and fasting forearm NEFA balance increased approximately fourfold (P = 0.10). Forearm phenylalanine net balance decreased following immobilization (P < 0.10), driven by an increased rate of appearance [from 32 ± 5 (fasting) and 21 ± 4 (clamp) preimmobilization to 53 ± 8 and 31 ± 4 postimmobilization; P < 0.05] while the rate of disappearance was unaffected by disuse or acipimox. Disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.NEW & NOTEWORTHY We demonstrate that 2 days of forearm cast immobilization in healthy young volunteers leads to the rapid development of insulin resistance, which is accompanied by accelerated muscle amino acid efflux in the absence of impaired muscle amino acid uptake. Acutely elevated fasting nonesterified fatty acid (NEFA) availability as a result of acipimox supplementation worsened muscle insulin resistance without affecting amino acid kinetics, suggesting increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not cause anabolic resistance.


Subject(s)
Insulin Resistance , Pyrazines , Humans , Young Adult , Amino Acids/metabolism , Fatty Acids, Nonesterified/metabolism , Forearm , Glucose/metabolism , Hypolipidemic Agents/metabolism , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use , Insulin/metabolism , Muscles/metabolism , Phenylalanine/metabolism , Polyesters/metabolism , Volunteers
8.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38220222

ABSTRACT

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Subject(s)
Amino Acids , Cross-Over Studies , Dietary Proteins , Insulin , Postprandial Period , Spirulina , Humans , Male , Female , Aged , Young Adult , Amino Acids/blood , Dietary Proteins/administration & dosage , Double-Blind Method , Insulin/blood , Amino Acids, Essential/blood , Amino Acids, Essential/administration & dosage , Chlorella , Blood Glucose/metabolism , Blood Glucose/analysis , Adult , Animals , Plant Proteins, Dietary/administration & dosage , Pisum sativum/chemistry , Pea Proteins/blood , Milk/chemistry , Milk Proteins/administration & dosage , Age Factors
9.
Exp Physiol ; 109(2): 227-239, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966359

ABSTRACT

Studies of extreme endurance have suggested that there is an alimentary limit to energy intake (EI) of ∼2.5 × resting metabolic rate (RMR). To gain further insight, this study aimed to simultaneously measure EI, total energy expenditure (TEE) body mass and muscle mass in a large cohort of males and females of varying ages during a transatlantic rowing race. Forty-nine competitors (m = 32, f = 17; age 24-67 years; time at sea 46 ± 7 days) in the 2020 and 2021 Talisker Whisky Atlantic Challenge rowed 12-18 hday-1 for ∼3000 miles. TEE was assessed in the final week of the row using 2 H2 18 O doubly labelled water, and EI was analysed from daily ration packs over this period. Thickness of relatively active (vastus lateralis, intermedius, biceps brachaii and rectus abdominus) and inactive (gastrocnemius, soleus and triceps) muscles was measured pre (<7 days) and post (<24 h) row using ultrasound. Body mass was measured and used to calculate RMR from standard equations. There were no sex differences in males and females in EI (2.5 ± 0.5 and 2.3 ± 0.4 × RMR, respectively, P = 0.3050), TEE (2.5 ± 1.0 and 2.3 ± 0.4 × RMR, respectively, P = 0.5170), or body mass loss (10.2 ± 3.1% and 10.0 ± 3.0%, respectively, P = 0.8520), and no effect of age on EI (P = 0.5450) or TEE (P = 0.9344). Muscle loss occurred exclusively in the calf (15.7% ± 11.4% P < 0.0001), whilst other muscles remained unchanged. After 46 days of prolonged ultra-endurance ocean rowing incurring 10% body mass loss, maximal sustainable EI of ∼2.5 × RMR was unable to meet total TEE suggesting that there is indeed a physiological capacity to EI.


Subject(s)
Body Composition , Energy Metabolism , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Energy Metabolism/physiology , Body Composition/physiology , Basal Metabolism/physiology , Energy Intake/physiology , Muscle, Skeletal , Oceans and Seas
10.
Geroscience ; 46(2): 2033-2049, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37801203

ABSTRACT

Myostatin negatively regulates skeletal muscle growth and appears upregulated in human obesity and associated with insulin resistance. However, observations are confounded by ageing, and the mechanisms responsible are unknown. The aim of this study was to delineate between the effects of excess adiposity, insulin resistance and ageing on myostatin mRNA expression in human skeletal muscle and to investigate causative factors using in vitro models. An in vivo cross-sectional analysis of human skeletal muscle was undertaken to isolate effects of excess adiposity and ageing per se on myostatin expression. In vitro studies employed human primary myotubes to investigate the potential involvement of cross-talk between subcutaneous adipose tissue (SAT) and skeletal muscle, and lipid-induced insulin resistance. Skeletal muscle myostatin mRNA expression was greater in aged adults with excess adiposity than age-matched adults with normal adiposity (2.0-fold higher; P < 0.05) and occurred concurrently with altered expression of genes involved in the maintenance of muscle mass but did not differ between younger and aged adults with normal adiposity. Neither chronic exposure to obese SAT secretome nor acute elevation of fatty acid availability (which induced insulin resistance) replicated the obesity-mediated upregulation of myostatin mRNA expression in vitro. In conclusion, skeletal muscle myostatin mRNA expression is uniquely upregulated in aged adults with excess adiposity and insulin resistance but not by ageing alone. This does not appear to be mediated by the SAT secretome or by lipid-induced insulin resistance. Thus, factors intrinsic to skeletal muscle may be responsible for the obesity-mediated upregulation of myostatin, and future work to establish causality is required.


Subject(s)
Insulin Resistance , Aged , Humans , Middle Aged , Adiposity/genetics , Aging/genetics , Cross-Sectional Studies , Insulin Resistance/genetics , Lipids , Muscle, Skeletal/metabolism , Myostatin/genetics , Myostatin/metabolism , Obesity/genetics , Obesity/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Clin Sci (Lond) ; 138(1): 43-60, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38112515

ABSTRACT

Nasogastric feeding of protein-rich liquids is a nutritional support therapy that attenuates muscle mass loss. However, whether administration via a nasogastric tube per se augments whole-body or muscle protein anabolism compared with oral administration is unknown. Healthy participants were administered a protein-rich drink (225 ml containing 21 g protein) orally (ORAL; n=13; age 21 ± 1 year; BMI 22.2 ± 0.6 kg·m-2) or via a nasogastric tube (NG; n=13; age 21 ± 1 yr; BMI 23.9 ± 0.9 kg·m-2) in a parallel group design, balanced for sex. L-[ring-2H5]-phenylalanine and L-[3,3-2H2]-tyrosine were infused to measure postabsorptive and postprandial whole-body protein turnover. Skeletal muscle biopsies were collected at -120, 0, 120 and 300 min relative to drink administration to quantify temporal myofibrillar fractional synthetic rates (myoFSR). Drink administration increased serum insulin and plasma amino acid concentrations, and to a greater extent and duration in NG versus ORAL (all interactions P<0.05). Drink administration increased whole-body protein synthesis (P<0.01), suppressed protein breakdown (P<0.001), and created positive net protein balance (P<0.001), but to a similar degree in ORAL and NG (interactions P>0.05). Drink administration increased myoFSR from the postabsorptive state (P<0.01), regardless of route of administration in ORAL and in NG (interaction P>0.05). Nasogastric bolus administration of a protein-rich drink induces insulinaemia and aminoacidaemia to a greater extent than oral administration, but the postprandial increase in whole-body protein turnover and muscle protein synthesis was equivalent between administration routes. Nasogastric administration is a potent intervention to increase postprandial amino acid availability. Future work should assess its utility in overcoming impaired sensitivity to protein feeding, such as that seen in ageing, disuse, and critical care.


Subject(s)
Amino Acids , Muscle Proteins , Humans , Young Adult , Adult , Muscle Proteins/metabolism , Amino Acids/metabolism , Muscle, Skeletal/metabolism , Phenylalanine/metabolism , Administration, Oral
12.
bioRxiv ; 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37873346

ABSTRACT

The mechanisms underpinning short-term muscle disuse atrophy remain to be elucidated, but perturbations in lipid metabolism may be involved. Specifically, positive muscle non-esterified fatty acid (NEFA) balance has been implicated in the development of disuse-induced insulin and anabolic resistance. Our aim was to determine the impact of acipimox administration (i.e. pharmacologically lowering circulating NEFA availability) on muscle amino acid metabolism and insulin sensitivity during short-term disuse. Eighteen healthy individuals (age 22±1 years, BMI 24.0±0.6 kg·m-2) underwent 2 days of forearm cast immobilization with placebo (PLA; n=9, 5M/4F) or acipimox (ACI; 250 mg Olbetam; n=9, 4M/5F) ingestion four times daily. Before and after immobilization, whole-body glucose disposal rate (GDR), forearm glucose uptake (FGU, i.e. muscle insulin sensitivity), and amino acid kinetics were measured under fasting and hyperinsulinaemic-hyperaminoacidaemic-euglycaemic clamp conditions using arteriovenous forearm balance and intravenous L-[ring-2H5]phenylalanine infusions. Immobilization did not affect GDR but decreased insulin-stimulated FGU in both groups, but to a greater degree in ACI (from 53±8 to 12±5 µmol·min-1) than in PLA (from 52±8 to 38±13 µmol·min-1; P<0.05). In ACI only, fasting arterialised NEFA concentrations were elevated to 1.3±0.1 mmol·L-1 post-immobilization (P<0.05), and fasting forearm NEFA balance increased ~4-fold (P=0.10). Forearm phenylalanine net balance tended to decrease following immobilization (P<0.10), driven by increases in phenylalanine rates of appearance (from 32±5 (fasting) and 21±4 (clamp) pre-immobilization to 53±8 and 31±4 post-immobilization; P<0.05) while rates of disappearance were unaffected and no effects of acipimox observed. Altogether, we show disuse-induced insulin resistance is accompanied by early signs of negative net muscle amino acid balance, which is driven by accelerated muscle amino acid efflux. Acutely elevated NEFA availability worsened muscle insulin resistance without affecting muscle amino acid kinetics, suggesting that disuse-associated increased muscle NEFA uptake may contribute to inactivity-induced insulin resistance but does not represent an early mechanism causing anabolic resistance.

14.
J Nutr ; 153(12): 3406-3417, 2023 12.
Article in English | MEDLINE | ID: mdl-37716611

ABSTRACT

BACKGROUND: Spirulina [SPIR] (cyanobacterium) and chlorella [CHLO] (microalgae) are foods rich in protein and essential amino acids; however, their capacity to stimulate myofibrillar protein synthesis (MyoPS) in humans remains unknown. OBJECTIVES: We assessed the impact of ingesting SPIR and CHLO compared with an established high-quality nonanimal-derived dietary protein source (fungal-derived mycoprotein [MYCO]) on plasma amino acid concentrations, as well as resting and postexercise MyoPS rates in young adults. METHODS: Thirty-six healthy young adults (age: 22 ± 3 y; BMI: 23 ± 3 kg·m-2; male [m]/female [f], 18/18) participated in a randomized, double-blind, parallel-group trial. Participants received a primed, continuous infusion of L-[ring-2H5]-phenylalanine and completed a bout of unilateral-resistance leg exercise before ingesting a drink containing 25 g protein from MYCO (n = 12; m/f, 6/6), SPIR (n = 12; m/f, 6/6), or CHLO (n = 12; m/f, 6/6). Blood and bilateral muscle samples were collected at baseline and during a 4-h postprandial and postexercise period to assess the plasma amino acid concentrations and MyoPS rates in rested and exercised tissue. RESULTS: Protein ingestion increased the plasma total and essential amino acid concentrations (time effects; all P < 0.001), but most rapidly and with higher peak responses following the ingestion of SPIR compared with MYCO and CHLO (P < 0.05), and MYCO compared with CHLO (P < 0.05). Protein ingestion increased MyoPS rates (time effect; P < 0.001) in both rested (MYCO, from 0.041 ± 0.032 to 0.060 ± 0.015%·h-1; SPIR, from 0.042 ± 0.030 to 0.066 ± 0.022%·h-1; and CHLO, from 0.037 ± 0.007 to 0.055 ± 0.019%·h-1, respectively) and exercised tissue (MYCO, from 0.046 ± 0.014 to 0.092 ± 0.024%·h-1; SPIR, from 0.038 ± 0.011 to 0.086 ± 0.028%·h-1; and CHLO, from 0.048 ± 0.019 to 0.090 ± 0.024%·h-1, respectively), with no differences between groups (interaction effect; P > 0.05), but with higher rates in exercised compared with rested muscle (time × exercise effect; P < 0.001). CONCLUSIONS: The ingestion of a single bolus of algae-derived SPIR and CHLO increases resting and postexercise MyoPS rates to a comparable extent as MYCO, despite divergent postprandial plasma amino acid responses.


Subject(s)
Chlorella , Resistance Training , Humans , Male , Young Adult , Female , Adult , Chlorella/metabolism , Muscle Proteins/metabolism , Amino Acids, Essential/metabolism , Phenylalanine/metabolism , Dietary Proteins/metabolism , Eating , Muscle, Skeletal/metabolism
15.
Physiol Rep ; 11(15): e15775, 2023 08.
Article in English | MEDLINE | ID: mdl-37537134

ABSTRACT

BACKGROUND: Dietary protein ingestion augments post (resistance) exercise muscle protein synthesis (MPS) rates. It is thought that the dose of leucine ingested within the protein (leucine threshold hypothesis) and the subsequent plasma leucine variables (leucine trigger hypothesis; peak magnitude, rate of rise, and total availability) determine the magnitude of the postprandial postexercise MPS response. METHODS: A quantitative systematic review was performed extracting data from studies that recruited healthy adults, applied a bout of resistance exercise, ingested a bolus of protein within an hour of exercise, and measured plasma leucine concentrations and MPS rates (delta change from basal). RESULTS: Ingested leucine dose was associated with the magnitude of the MPS response in older, but not younger, adults over acute (0-2 h, r2 = 0.64, p = 0.02) and the entire postprandial (>2 h, r2 = 0.18, p = 0.01) period. However, no single plasma leucine variable possessed substantial predictive capacity over the magnitude of MPS rates in younger or older adults. CONCLUSION: Our data provide support that leucine dose provides predictive capacity over postprandial postexercise MPS responses in older adults. However, no threshold in older adults and no plasma leucine variable was correlated with the magnitude of the postexercise anabolic response.


Subject(s)
Diet , Muscle Proteins , Humans , Aged , Leucine , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Dietary Proteins/metabolism , Postprandial Period
16.
Am J Physiol Endocrinol Metab ; 325(3): E267-E279, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37529834

ABSTRACT

Pea protein is an attractive nonanimal-derived protein source to support dietary protein requirements. However, although high in leucine, a low methionine content has been suggested to limit its anabolic potential. Mycoprotein has a complete amino acid profile which, at least in part, may explain its ability to robustly stimulate myofibrillar protein synthesis (MyoPS) rates. We hypothesized that an inferior postexercise MyoPS response would be seen following ingestion of pea protein compared with mycoprotein, which would be (partially) rescued by blending the two sources. Thirty-three healthy, young [age: 21 ± 1 yr, body mass index (BMI): 24 ± 1 kg·m-2] and resistance-trained participants received primed, continuous infusions of l-[ring-2H5]phenylalanine and completed a bout of whole body resistance exercise before ingesting 25 g of protein from mycoprotein (MYC, n = 11), pea protein (PEA, n = 11), or a blend (39% MYC, 61% PEA) of the two (BLEND, n = 11). Blood and muscle samples were taken pre-, 2 h, and 4 h postexercise/protein ingestion to assess postabsorptive and postprandial postexercise myofibrillar protein fractional synthetic rates (FSRs). Protein ingestion increased plasma essential amino acid and leucine concentrations (time effect; P < 0.0001), but more rapidly in BLEND and PEA compared with MYC (time × condition interaction; P < 0.0001). From similar postabsorptive values (MYC, 0.026 ± 0.008%·h-1; PEA, 0.028 ± 0.007%·h-1; BLEND, 0.026 ± 0.006%·h-1), resistance exercise and protein ingestion increased myofibrillar FSRs (time effect; P < 0.0001) over a 4-h postprandial period (MYC, 0.076 ± 0.004%·h-1; PEA, 0.087 ± 0.01%·h-1; BLEND, 0.085 ± 0.01%·h-1), with no differences between groups (all; P > 0.05). These data show that all three nonanimal-derived protein sources have utility in supporting postexercise muscle reconditioning.NEW & NOTEWORTHY This study provides evidence that pea protein (PEA), mycoprotein (MYC), and their blend (BLEND) can support postexercise myofibrillar protein synthesis rates following a bout of whole body resistance exercise. Furthermore, these data suggest that a methionine deficiency in pea may not limit its capacity to stimulate an acute increase in muscle protein synthesis (MPS).


Subject(s)
Pea Proteins , Resistance Training , Humans , Young Adult , Adult , Leucine/metabolism , Pea Proteins/metabolism , Amino Acids/metabolism , Muscle, Skeletal/metabolism , Eating , Methionine/metabolism , Dietary Proteins/metabolism , Postprandial Period
17.
J Cachexia Sarcopenia Muscle ; 14(5): 2064-2075, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37431714

ABSTRACT

BACKGROUND: The decline in postabsorptive and postprandial muscle protein fractional synthesis rates (FSR) does not quantitatively account for muscle atrophy during uncomplicated, short-term disuse, when atrophy rates are the highest. We sought to determine whether 2 days of unilateral knee immobilization affects mixed muscle protein fractional breakdown rates (FBR) during postabsorptive and simulated postprandial conditions. METHODS: Twenty-three healthy, male participants (age: 22 ± 1 year; height: 179 ± 1 cm; body mass: 73.4 ± 1.5 kg; body mass index 22.8 ± 0.5 kg·m-2 ) took part in this randomized, controlled study. After 48 h of unilateral knee immobilization, primed continuous intravenous l-[15 N]-phenylalanine and l-[ring-2 H5 ]-phenylalanine infusions were used for parallel determinations of FBR and FSR, respectively, in a postabsorptive (saline infusion; FAST) or simulated postprandial state (67.5 mg·kg body mass-1 ·h-1 amino acid infusion; FED). Bilateral m. vastus lateralis biopsies from the control (CON) and immobilized (IMM) legs, and arterialized-venous blood samples, were collected throughout. RESULTS: Amino acid infusion rapidly increased plasma phenylalanine (59 ± 9%), leucine (76 ± 5%), isoleucine (109 ± 7%) and valine (42 ± 4%) concentrations in FED only (all P < 0.001), which was sustained for the remainder of infusion. Serum insulin concentrations peaked at 21.8 ± 2.2 mU·L-1 at 15 min in FED only (P < 0.001) and were 60% greater in FED than FAST (P < 0.01). Immobilization did not influence FBR in either FAST (CON: 0.150 ± 0.018; IMM: 0.143 ± 0.017%·h-1 ) or FED (CON: 0.134 ± 0.012; IMM: 0.160 ± 0.018%·h-1 ; all effects P > 0.05). However, immobilization decreased FSR (P < 0.05) in both FAST (0.071 ± 0.004 vs. 0.086 ± 0.007%·h-1 ; IMM vs CON, respectively) and FED (0.066 ± 0.016 vs. 0.119 ± 0.016%·h-1 ; IMM vs CON, respectively). Consequently, immobilization decreased net muscle protein balance (P < 0.05) and to a greater extent in FED (CON: -0.012 ± 0.025; IMM: -0.095 ± 0.023%·h-1 ; P < 0.05) than FAST (CON: -0.064 ± 0.020; IMM: -0.072 ± 0.017%·h-1 ). CONCLUSIONS: We conclude that merely 2 days of leg immobilization does not modulate postabsorptive and simulated postprandial muscle protein breakdown rates. Instead, under these conditions the muscle negative muscle protein balance associated with brief periods of experimental disuse is driven near exclusively by reduced basal muscle protein synthesis rates and anabolic resistance to amino acid administration.

18.
Adv Nutr ; 14(4): 774-795, 2023 07.
Article in English | MEDLINE | ID: mdl-37127187

ABSTRACT

Accepting a continued rise in the prevalence of vegan-type diets in the general population is also likely to occur in athletic populations, it is of importance to assess the potential impact on athletic performance, adaptation, and recovery. Nutritional consideration for the athlete requires optimization of energy, macronutrient, and micronutrient intakes, and potentially the judicious selection of dietary supplements, all specified to meet the individual athlete's training and performance goals. The purpose of this review is to assess whether adopting a vegan diet is likely to impinge on such optimal nutrition and, where so, consider evidence based yet practical and pragmatic nutritional recommendations. Current evidence does not support that a vegan-type diet will enhance performance, adaptation, or recovery in athletes, but equally suggests that an athlete can follow a (more) vegan diet without detriment. A clear caveat, however, is that vegan diets consumed spontaneously may induce suboptimal intakes of key nutrients, most notably quantity and/or quality of dietary protein and specific micronutrients (eg, iron, calcium, vitamin B12, and vitamin D). As such, optimal vegan sports nutrition requires (more) careful consideration, evaluation, and planning. Individual/seasonal goals, training modalities, athlete type, and sensory/cultural/ethical preferences, among other factors, should all be considered when planning and adopting a vegan diet.


Subject(s)
Diet, Vegan , Vegans , Humans , Dietary Supplements , Athletes , Nutritional Status , Diet
19.
Physiol Rep ; 11(4): e15615, 2023 02.
Article in English | MEDLINE | ID: mdl-36806708

ABSTRACT

Increasing skeletal muscle carnitine content can manipulate fuel metabolism and improve exercise performance. Intravenous insulin infusion during hypercarnitinemia increases plasma carnitine clearance and Na+ -dependent muscle carnitine accretion, likely via stimulating Na+ /K+ ATPase pump activity. We hypothesized that the ingestion of high-dose caffeine, also known to stimulate Na+ /K+ ATPase activity, would stimulate plasma carnitine clearance during hypercarnitinemia in humans. In a randomized placebo-controlled study, six healthy young adults (aged 24 ± 5 years, height 175 ± 8 cm, and weight 70 ± 13 kg) underwent three 5-h laboratory visits involving the primed continuous intravenous infusion of l-carnitine (CARN and CARN + CAFF) or saline (CAFF) in parallel with ingestion of caffeine (CARN + CAFF and CAFF) or placebo (CARN) at 0, 2, 3, and 4 h. Regular blood samples were collected to determine concentrations of blood Na+ and K+ , and plasma carnitine and caffeine, concentrations. Caffeine ingestion (i.e., CAFF and CARN + CAFF conditions) and l-carnitine infusion (i.e., CARN and CARN + CAFF) elevated steady-state plasma caffeine (to ~7 µg·mL-1 ) and carnitine (to ~400 µmol·L-1 ) concentrations, respectively, throughout the 5 h infusions. Plasma carnitine concentration was ~15% lower in CARN + CAFF compared with CARN during the final 90 min of the infusion (at 210 min, 356 ± 96 vs. 412 ± 94 µmol·L-1 ; p = 0.0080: at 240 min, 350 ± 91 vs. 406 ± 102 µmol·L-1 ; p = 0.0079: and at 300 min, 357 ± 91 vs. 413 ± 110 µmol·L-1 ; p = 0.0073, respectively). Blood Na+ concentrations were greater in CAFF and CARN + CAFF compared with CARN. Ingestion of high-dose caffeine stimulates plasma carnitine clearance during hypercarnitinemia, likely via increased Na+ /K+ ATPase activity. Carnitine co-ingestion with caffeine may represent a novel muscle carnitine loading strategy in humans, and therefore manipulate skeletal muscle fuel metabolism and improve exercise performance.


Subject(s)
Caffeine , Carnitine , Young Adult , Humans , Muscle, Skeletal/metabolism , Exercise/physiology , Sodium/metabolism , Eating
20.
J Nutr ; 153(6): 1680-1695, 2023 06.
Article in English | MEDLINE | ID: mdl-36822394

ABSTRACT

BACKGROUND: It remains unclear whether non-animal-derived dietary protein sources (and therefore vegan diets) can support resistance training-induced skeletal muscle remodeling to the same extent as animal-derived protein sources. METHODS: In Phase 1, 16 healthy young adults (m = 8, f = 8; age: 23 ± 1 y; BMI: 23 ± 1 kg/m2) completed a 3-d dietary intervention (high protein, 1.8 g·kg bm-1·d-1) where protein was derived from omnivorous (OMNI1; n = 8) or exclusively non-animal (VEG1; n = 8) sources, alongside daily unilateral leg resistance exercise. Resting and exercised daily myofibrillar protein synthesis (MyoPS) rates were assessed using deuterium oxide. In Phase 2, 22 healthy young adults (m = 11, f = 11; age: 24 ± 1 y; BMI: 23 ± 0 kg/m2) completed a 10 wk, high-volume (5 d/wk), progressive resistance exercise program while consuming an omnivorous (OMNI2; n = 12) or non-animal-derived (VEG2; n = 10) high-protein diet (∼2 g·kg bm-1·d-1). Muscle fiber cross-sectional area (CSA), whole-body lean mass (via DXA), thigh muscle volume (via MRI), muscle strength, and muscle function were determined pre, after 2 and 5 wk, and postintervention. OBJECTIVES: To investigate whether a high-protein, mycoprotein-rich, non-animal-derived diet can support resistance training-induced skeletal muscle remodeling to the same extent as an isonitrogenous omnivorous diet. RESULTS: Daily MyoPS rates were ∼12% higher in the exercised than in the rested leg (2.46 ± 0.27%·d-1 compared with 2.20 ± 0.33%·d-1 and 2.62 ± 0.56%·d-1 compared with 2.36 ± 0.53%·d-1 in OMNI1 and VEG1, respectively; P < 0.001) and not different between groups (P > 0.05). Resistance training increased lean mass in both groups by a similar magnitude (OMNI2 2.6 ± 1.1 kg, VEG2 3.1 ± 2.5 kg; P > 0.05). Likewise, training comparably increased thigh muscle volume (OMNI2 8.3 ± 3.6%, VEG2 8.3 ± 4.1%; P > 0.05), and muscle fiber CSA (OMNI2 33 ± 24%, VEG2 32 ± 48%; P > 0.05). Both groups increased strength (1 repetition maximum) of multiple muscle groups, to comparable degrees. CONCLUSIONS: Omnivorous and vegan diets can support comparable rested and exercised daily MyoPS rates in healthy young adults consuming a high-protein diet. This translates to similar skeletal muscle adaptive responses during prolonged high-volume resistance training, irrespective of dietary protein provenance. This trial was registered at clinicaltrials.gov as NCT03572127.


Subject(s)
Diet, High-Protein , Resistance Training , Humans , Diet, Vegan , Dietary Proteins/metabolism , Hypertrophy/metabolism , Muscle Strength , Muscle, Skeletal/metabolism , Vegans
SELECTION OF CITATIONS
SEARCH DETAIL
...