Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(18): 7866-7879, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38632950

ABSTRACT

Rhenium(I) tricarbonyl complexes are widely studied for their cell imaging properties and anti-cancer and anti-microbial activities, but the complexes with S-donor ligands remain relatively unexplored. A series of six fac-[Re(NN)(CO)3(SR)] complexes, where (NN) is 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen), and RSH is a series of thiocarboxylic acid methyl esters, have been synthesized and characterized. Cellular uptake and anti-proliferative activities of these complexes in human breast cancer cell lines (MDA-MB-231 and MCF-7) were generally lower than those of the previously described fac-[Re(NN)(CO)3(OH2)]+ complexes; however, one of the complexes, fac-[Re(CO)3(phen)(SC(Ph)CH2C(O)OMe)] (3b), was active (IC50 ∼ 10 µM at 72 h treatment) in thiol-depleted MDA-MB-231 cells. Moreover, unlike fac-[Re(CO)3(phen)(OH2)]+, this complex did not lose activity in the presence of extracellular glutathione. Taken together these properties show promise for further development of 3b and its analogues as potential anti-cancer drugs for co-treatment with thiol-depleting agents. Conversely, the stable and non-toxic complex, fac-[Re(bipy)(CO)3(SC(Me)C(O)OMe)] (1a), predominantly localized in the lysosomes of MDA-MB-231 cells, as shown by live cell confocal microscopy (λex = 405 nm, λem = 470-570 nm). It is strongly localized in a subset of lysosomes (25 µM Re, 4 h treatment), as shown by co-localization with a Lysotracker dye. Longer treatment times with 1a (25 µM Re for 48 h) resulted in partial migration of the probe into the mitochondria, as shown by co-localization with a Mitotracker dye. These properties make complex 1a an attractive target for further development as an organelle probe for multimodal imaging, including phosphorescence, carbonyl tag for vibrational spectroscopy, and Re tag for X-ray fluorescence microscopy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Rhenium , Sulfur , Humans , Rhenium/chemistry , Rhenium/pharmacology , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Sulfur/chemistry , Sulfur/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Molecular Structure
2.
Dalton Trans ; 52(15): 4835-4848, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36939381

ABSTRACT

Twelve Re(I) tricarbonyl diimine (2,2'-bipyridine and 1,10-phenanthroline) complexes with thiotetrazolato ligands have been synthesised and fully characterised. Structural characterisation revealed the capacity of the tetrazolato ligand to bind to the Re(I) centre through either the S atom or the N atom with crystallography revealing most complexes being bound to the N atom. However, an example where the Re(I) centre is linked via the S atom has been identified. In solution, the complexes exist as an equilibrating mixture of linkage isomers, as suggested by comparison of their NMR spectra at room temperature and 373 K, as well as 2D exchange spectroscopy. The complexes are photoluminescent in fluid solution at room temperature, with emission either at 625 or 640 nm from the metal-to-ligand charge transfer excited states of triplet multiplicity, which seems to be exclusively dependent on the nature of the diimine ligand. The oxygen-sensitive excited state lifetime decay ranges between 12.5 and 27.5 ns for the complexes bound to 2,2'-bipyrdine, or between 130.6 and 155.2 ns for those bound to 1.10-phenanthroline. Quantum yields were measured within 0.4 and 1.5%. The complexes were incubated with human lung (A549), brain (T98g), and breast (MDA-MB-231) cancer cells, as well as with normal human skin fibroblasts (HFF-1), revealing low to moderate cytotoxicity, which for some compounds exceeded that of a standard anti-cancer drug, cisplatin. Low cytotoxicity combined with significant cellular uptake and photoluminescence properties provides potential for their use as cellular imaging agents. Furthermore, the complexes were assessed in disc diffusion and broth microdilution assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, which revealed negligible antibacterial activity in the dark or after irradiation.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Methicillin-Resistant Staphylococcus aureus , Humans , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Escherichia coli , Ligands , Rhenium
3.
J Inorg Biochem ; 221: 111470, 2021 08.
Article in English | MEDLINE | ID: mdl-33971522

ABSTRACT

Low molecular weight thiols including trypanothione and glutathione play an important function in the cellular growth, maintenance and reduction of oxidative stress in Leishmania species. In particular, parasite specific trypanothione has been established as a prime target for new anti-leishmania drugs. Previous studies into the interaction of the front-line Sb(V) based anti-leishmanial drug meglumine antimoniate with glutathione, have demonstrated that a reduction pathway may be responsible for its effective and selective nature. The new suite of organometallic complexes, of general formula [MAr3(O2CR)2] (M = Sb or Bi) have been shown to have potential as new selective drug candidates. However, their behaviour towards the critical thiols glutathione and trypanothione is still largely unknown. Using NMR spectroscopy and mass spectrometry we have examined the interaction of the analogous Sb(V) and Bi(V) organometallic complexes, [SbPh3(O2CCH2(C6H4CH3))2] S1 and [BiPh3(O2CCH2(C6H4CH3))2] B1, with the trifluoroacetate (TFA) salt of trypanothione and L-glutathione. In the presence of trypanothione or glutathione at the clinically relevant pH of 4-5 for Leishmania amastigotes, both complexes undergo facile and rapid reduction, with no discernible difference. However, at a higher pH (6-7), the complexes behave quite differently towards glutathione. The Bi(V) complex is again reduced rapidly but the Sb(V) complex undergoes slow reduction over 8 h (t1/2 = 54 min.) These results give the first insights into why the highly oxidising Bi(V) complexes display low selectivity in their cytotoxicity towards leishmanial and mammalian cells, while the Sb(V) complexes show good selectivity.


Subject(s)
Coordination Complexes/chemistry , Glutathione/analogs & derivatives , Glutathione/chemistry , Spermidine/analogs & derivatives , Trypanocidal Agents/chemistry , Antimony/chemistry , Bismuth/chemistry , Half-Life , Oxidation-Reduction , Spermidine/chemistry
4.
Future Med Chem ; 12(22): 2035-2065, 2020 11.
Article in English | MEDLINE | ID: mdl-33169622

ABSTRACT

As bacteria continue to develop resistance to our existing treatment options, antibiotic innovation remains overlooked. If current trends continue, then we could face the stark reality of a postantibiotic era, whereby routine bacterial infections could once again become deadly. In light of a warning signaled by the WHO, a number of new initiatives have been established in the hope of reinvigorating the antibiotic drug development pipeline. In this perspective, we aim to summarize some of these initiatives and funding options, as well as providing an insight into the predicament that we face. Using clinical trials data, company website information and the most recent press releases, a current update of the antibiotic drug development pipeline is also included.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Development , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests
6.
Dalton Trans ; 49(22): 7341-7354, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32392274

ABSTRACT

To study and evaluate the effect of ligand choice and distribution in bismuth phosphinates on toxicity and antibacterial activity, a series of novel diphenyl mono-phosphinato bismuth complexes, [BiPh2(O(O[double bond, length as m-dash])P(H)Ph)] 1, [BiPh2(O(O[double bond, length as m-dash])PPh2)] 2, [BiPh2(O(O[double bond, length as m-dash])PMe2)] 3 and [BiPh2(O(O[double bond, length as m-dash])P(p-MeOPh)2)] 4, were synthesised, characterised and structurally authenticated by X-ray crystallography. Evaluation of their antibacterial activity towards Staphylococcus aureus (S. aureus), methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococci (VRE), Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) showed all four mono-phosphinato bismuth complexes to be highly active. However, unlike their less soluble bis-phosphinato analogues, they displayed an increased level of toxicity towards mammalian cells (COS-7, human and murine fibroblasts), where it was shown the complexes disrupt cellular membranes leading to cytotoxicity. The mono-phosphinato bismuth complexes were used to produce antibacterial nanocellulose composites. Leaching studies showed that complex 1 had the highest levels of leaching, at 15% of the total available bismuth when the composite was soaked in water. The aqueous leachates of 1 were bacteriostatic towards MRSA and VRE at concentrations between 4.0 and 4.6 µM, while being bactericidal towards E. coli above 2.8 µM. At similar concentrations the complex showed toxicity towards human fibroblast cells, with cell viability reduced to 2% (1, 2.4 µM). The possibility to control leaching of the bismuth complexes from cellulose composites through structural changes is evidence for their potential application in antibacterial surfaces and materials.

7.
Chemistry ; 26(34): 7657-7671, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32297355

ABSTRACT

A series of homoleptic and heteroleptic bismuth(III) flavonolate complexes derived from six flavonols of varying substitution have been synthesised and structurally characterised. The complexes were evaluated for antibacterial activity towards several problematic Gram-positive (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE)) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. The cell viability of COS-7 (monkey kidney) cells treated with the bismuth flavonolates was also studied to determine the effect of the complexes on mammalian cells. The heteroleptic complexes [BiPh(L)2 ] (in which L=flavonolate) showed good antibacterial activity towards all of the bacteria but reduced COS-7 cell viability in a concentration-dependent manner. The homoleptic complexes [Bi(L)3 ] exhibited activity towards the Gram-positive bacteria and showed low toxicity towards the mammalian cell line. Bismuth uptake studies in VRE and COS-7 cells treated with the bismuth flavonolate complexes indicated that Bi accumulation is influenced by both the substitution of the flavonolate ligands and the degree of substitution at the bismuth centre.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bismuth/chemistry , Coordination Complexes/chemistry , Escherichia coli/drug effects , Gram-Positive Bacteria/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Escherichia coli/chemistry , Gram-Positive Bacteria/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/chemistry , Pseudomonas aeruginosa/chemistry , Staphylococcus aureus/chemistry
8.
Inorg Chem ; 59(6): 3494-3508, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32129066

ABSTRACT

Antimicrobial resistance is becoming an ever-increasing threat for human health. Metal complexes and, in particular, those that incorporate bismuth offer an attractive alternative to the typically used organic compounds to which bacteria are often able to develop resistance determinants. Herein we report the synthesis, characterization, and biological evaluation of a series of homo- and heteroleptic bismuth(III) thiolates incorporating either one (BiPh2L), two (BiPhL2), or three (BiL3) sulfur-containing azole ligands where LH = tetrazolethiols or triazolethiols (thiones). Despite bismuth typically being considered a nontoxic heavy metal, we demonstrate that the environment surrounding the metal center has a clear influence on the safety of bismuth-containing complexes. In particular, heteroleptic thiolate complexes (BiPh2L and BiPhL2) display strong antibacterial activity yet are also nonselectively cytotoxic to mammalian cells. Interestingly, the homoleptic thiolate complexes (BiL3) were shown to be completely inactive toward both bacterial and mammalian cells. Further biological analysis of the complexes revealed the first insights into the biological mode of action of these particular bismuth thiolates. Scanning electron microscopy images of methicillin-resistant Staphylococcus aureus (MRSA) cells have revealed that the cell membrane is the likely target site of action for bismuth thiolates against bacterial cells. This points toward a nonspecific mode of action that is likely to contribute to the poor selectivity's demonstrated by the bismuth thiolate complexes in vitro. Uptake studies suggest that reduced cellular uptake could explain the marked difference in activity between the homo- and heteroleptic complexes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Organometallic Compounds/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/toxicity , Bacteria/drug effects , Bismuth/chemistry , COS Cells , Chlorocebus aethiops , Hemolysis/drug effects , Microbial Sensitivity Tests , Molecular Structure , Organometallic Compounds/chemical synthesis , Organometallic Compounds/toxicity , Structure-Activity Relationship
9.
Chembiochem ; 21(8): 1188-1200, 2020 04 17.
Article in English | MEDLINE | ID: mdl-31701616

ABSTRACT

RuII -arene complexes provide a versatile scaffold for novel anticancer drugs. Seven new RuII -arene-thiocarboxylato dimers were synthesized and characterized. Three of the complexes (2 a, b and 5) showed promising antiproliferative activities in MDA-MB-231 (human invasive breast cancer) cells, and were further tested in a panel of fifteen cancerous and noncancerous cell lines. Complex 5 showed moderate but remarkably selective activity in MDA-MB-231 cells (IC50 =39±4 µm Ru). Real-time proliferation studies showed that 5 induced apoptosis in MDA-MB-231 cells but had no effect in A549 (human lung cancer, epithelial) cells. By contrast, 2 a and b showed moderate antiproliferative activity, but no apoptosis, in either cell line. Selective cytotoxicity of 5 in aggressive, mesenchymal-like MDA-MB-231 cells over many common epithelial cancer cell lines (including noninvasive breast cancer MCF-7) makes it an attractive lead compound for the development of specifically antimetastatic Ru complexes with low systemic toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis , Breast Neoplasms/pathology , Carboxylic Acids/chemistry , Coordination Complexes/pharmacology , Ruthenium/chemistry , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Proliferation , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Female , Humans , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemistry , Tumor Cells, Cultured
10.
Chem Commun (Camb) ; 55(100): 15129-15132, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31788680

ABSTRACT

Here, a reaction-based indicator displacement hydrogel assay (RIA) was developed for the detection of hydrogen peroxide (H2O2) via the oxidative release of the optical reporter Alizarin Red S (ARS). In the presence of H2O2, the RIA system displayed potent biofilm inhibition for Methicillin-resistant Staphylococcus aureus (MRSA), as shown through an in vitro assay quantifying antimicrobial efficacy. This work demonstrated the potential of H2O2-responsive hydrogels containing a covalently bound diol-based drug for controlled drug release.


Subject(s)
Anthraquinones/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Hydrogen Peroxide/chemistry , Methicillin-Resistant Staphylococcus aureus/physiology , Anthraquinones/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...