Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Lancet Planet Health ; 8(4): e270-e283, 2024 04.
Article in English | MEDLINE | ID: mdl-38580428

ABSTRACT

The concurrent pressures of rising global temperatures, rates and incidence of species decline, and emergence of infectious diseases represent an unprecedented planetary crisis. Intergovernmental reports have drawn focus to the escalating climate and biodiversity crises and the connections between them, but interactions among all three pressures have been largely overlooked. Non-linearities and dampening and reinforcing interactions among pressures make considering interconnections essential to anticipating planetary challenges. In this Review, we define and exemplify the causal pathways that link the three global pressures of climate change, biodiversity loss, and infectious disease. A literature assessment and case studies show that the mechanisms between certain pairs of pressures are better understood than others and that the full triad of interactions is rarely considered. Although challenges to evaluating these interactions-including a mismatch in scales, data availability, and methods-are substantial, current approaches would benefit from expanding scientific cultures to embrace interdisciplinarity and from integrating animal, human, and environmental perspectives. Considering the full suite of connections would be transformative for planetary health by identifying potential for co-benefits and mutually beneficial scenarios, and highlighting where a narrow focus on solutions to one pressure might aggravate another.


Subject(s)
Communicable Diseases , Ecosystem , Animals , Humans , Climate Change , Biodiversity , Models, Theoretical , Communicable Diseases/epidemiology
3.
Viruses ; 15(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36851523

ABSTRACT

The past few decades have been marked by drastic modifications to the landscape by anthropogenic processes, leading to increased variability in the environment. For populations that thrive at their distributional boundaries, these changes can affect them drastically, as Schmalhausen's law predicts that their dynamics are more likely to be susceptible to environmental variation. Recently, this evolutionary theory has been put to the test in vector-borne disease emergences systems, and has been demonstrated effective in predicting emergence patterns. However, it has yet to be tested in a directly transmitted pathogen. Here, we provide a preliminary test of Schmalhausen's law using data on Marburg virus outbreaks originating from spillover events. By combining the two important aspects of Schmalhausen's law, namely climatic anomalies and distance to species distributional edges, we show that Marburgvirus outbreaks may support an aspect of this evolutionary theory, with distance to species distributional edge having a weak influence on outbreak size. However, we failed to demonstrate any effect of climatic anomalies on Marburgvirus outbreaks, arguably related to the lack of importance of these variables in directly transmitted pathogen outbreaks. With increasing zoonotic spillover events occurring from wild species, we highlight the importance of considering ecological variability to better predict emergence patterns.


Subject(s)
Disease Outbreaks , Marburgvirus , Animals , Biological Evolution , Zoonoses
4.
Trends Parasitol ; 39(4): 238-241, 2023 04.
Article in English | MEDLINE | ID: mdl-36803860

ABSTRACT

War is an understudied and yet significant contributor to disease outbreaks, necessitating approaches incorporating conflicts into disease studies. We discuss mechanisms by which war affects disease dynamics, and supply an illustrative example. Lastly, we provide relevant data sources and pathways for incorporating metrics of armed conflict into disease ecology.


Subject(s)
Armed Conflicts , Communicable Diseases , Disease Outbreaks , Africa South of the Sahara/epidemiology , Ecology , Zoonoses/epidemiology
5.
PLoS Negl Trop Dis ; 16(12): e0010993, 2022 12.
Article in English | MEDLINE | ID: mdl-36542657

ABSTRACT

We explore how animal host traits, phylogenetic identity and cell receptor sequences relate to infection status and mortality from ebolaviruses. We gathered exhaustive databases of mortality from Ebolavirus after exposure and infection status based on PCR and antibody tests. We performed ridge regressions predicting mortality and infection as a function of traits, phylogenetic eigenvectors and separately host receptor sequences. We found that mortality from Ebolavirus had a strong association to life history characteristics and phylogeny. In contrast, infection status related not just to life history and phylogeny, but also to fruit consumption which suggests that geographic overlap of frugivorous mammals can lead to spread of virus in the wild. Niemann Pick C1 (NPC1) receptor sequences predicted infection statuses of bats included in our study with very high accuracy, suggesting that characterizing NPC1 in additional species is a promising avenue for future work. We combine the predictions from our mortality and infection status models to differentiate between species that are infected and also die from Ebolavirus versus species that are infected but tolerate the virus (possible reservoirs of Ebolavirus). We therefore present the first comprehensive estimates of Ebolavirus reservoir statuses for all known terrestrial mammals in Africa.


Subject(s)
Chiroptera , Ebolavirus , Hemorrhagic Fever, Ebola , Animals , Ebolavirus/physiology , Phylogeny , Mammals , Carrier Proteins , Receptors, Cell Surface
6.
Vector Borne Zoonotic Dis ; 22(9): 478-490, 2022 09.
Article in English | MEDLINE | ID: mdl-36084314

ABSTRACT

Outbreaks of African filoviruses often have high mortality, including more than 11,000 deaths among 28,562 cases during the West Africa Ebola outbreak of 2014-2016. Numerous studies have investigated the factors that contributed to individual filovirus outbreaks, but there has been little quantitative synthesis of this work. In addition, the ways in which the typical causes of filovirus outbreaks differ from other zoonoses remain poorly described. In this study, we quantify factors associated with 45 outbreaks of African filoviruses (ebolaviruses and Marburg virus) using a rubric of 48 candidate causal drivers. For filovirus outbreaks, we reviewed >700 peer-reviewed and gray literature sources and developed a list of the factors reported to contribute to each outbreak (i.e., a "driver profile" for each outbreak). We compare and contrast the profiles of filovirus outbreaks to 200 background outbreaks, randomly selected from a global database of 4463 outbreaks of bacterial and viral zoonotic diseases. We also test whether the quantitative patterns that we observed were robust to the influences of six covariates, country-level factors such as gross domestic product, population density, and latitude that have been shown to bias global outbreak data. We find that, regardless of whether covariates are included or excluded from models, the driver profile of filovirus outbreaks differs from that of background outbreaks. Socioeconomic factors such as trade and travel, wild game consumption, failures of medical procedures, and deficiencies in human health infrastructure were more frequently reported in filovirus outbreaks than in the comparison group. Based on our results, we also present a review of drivers reported in at least 10% of filovirus outbreaks, with examples of each provided.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Marburg Virus Disease , Marburgvirus , Animals , Disease Outbreaks , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/veterinary , Humans , Marburg Virus Disease/epidemiology
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200535, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34538141

ABSTRACT

Zoonotic disease outbreaks are an important threat to human health and numerous drivers have been recognized as contributing to their increasing frequency. Identifying and quantifying relationships between drivers of zoonotic disease outbreaks and outbreak severity is critical to developing targeted zoonotic disease surveillance and outbreak prevention strategies. However, quantitative studies of outbreak drivers on a global scale are lacking. Attributes of countries such as press freedom, surveillance capabilities and latitude also bias global outbreak data. To illustrate these issues, we review the characteristics of the 100 largest outbreaks in a global dataset (n = 4463 bacterial and viral zoonotic outbreaks), and compare them with 200 randomly chosen background controls. Large outbreaks tended to have more drivers than background outbreaks and were related to large-scale environmental and demographic factors such as changes in vector abundance, human population density, unusual weather conditions and water contamination. Pathogens of large outbreaks were more likely to be viral and vector-borne than background outbreaks. Overall, our case study shows that the characteristics of large zoonotic outbreaks with thousands to millions of cases differ consistently from those of more typical outbreaks. We also discuss the limitations of our work, hoping to pave the way for more comprehensive future studies. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Subject(s)
Bacterial Zoonoses , Disease Outbreaks/statistics & numerical data , Viral Zoonoses , Animals , Bacterial Zoonoses/epidemiology , Bacterial Zoonoses/microbiology , Bacterial Zoonoses/prevention & control , Bacterial Zoonoses/transmission , Viral Zoonoses/epidemiology , Viral Zoonoses/microbiology , Viral Zoonoses/prevention & control , Viral Zoonoses/transmission
9.
Philos Trans R Soc Lond B Biol Sci ; 376(1837): 20200351, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34538147

ABSTRACT

A growing body of research is focused on the extinction of parasite species in response to host endangerment and declines. Beyond the loss of parasite species richness, host extinction can impact apparent parasite host specificity, as measured by host richness or the phylogenetic distances among hosts. Such impacts on the distribution of parasites across the host phylogeny can have knock-on effects that may reshape the adaptation of both hosts and parasites, ultimately shifting the evolutionary landscape underlying the potential for emergence and the evolution of virulence across hosts. Here, we examine how the reshaping of host phylogenies through extinction may impact the host specificity of parasites, and offer examples from historical extinctions, present-day endangerment, and future projections of biodiversity loss. We suggest that an improved understanding of the impact of host extinction on contemporary host-parasite interactions may shed light on core aspects of disease ecology, including comparative studies of host specificity, virulence evolution in multi-host parasite systems, and future trajectories for host and parasite biodiversity. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.


Subject(s)
Extinction, Biological , Host Specificity , Host-Parasite Interactions , Parasites/physiology , Animals , Species Specificity
10.
Evolution ; 75(10): 2568-2588, 2021 10.
Article in English | MEDLINE | ID: mdl-34437719

ABSTRACT

Environmental heterogeneity has led to the widespread evolution of phenotypic plasticity in all taxonomic groups. Although phenotypic plasticity has been examined from multiple perspectives, few studies have examined evolutionary patterns of plasticity within a phylogeny. We conducted common-garden experiments on 20 species of tadpoles, spanning three families, exposed for 4 weeks to a control, predator cues, or reduced food (i.e., increased intraspecific competition). We quantified tadpole activity, growth, and relative morphology and found widespread differences in species responses to predator cues and reduced food. We detected pervasive phylogenetic signals in traits within each environment, but the phylogenetic signal was much less common in the trait plasticities. Among different models of continuous character evolution, Brownian Motion and Ornstein Uhlenbeck models provided better fits to the data than the Early Burst model. Tadpole activity level in predator environments had much higher evolutionary rates than in the control and reduced-food environments; we did not see this pattern in the other traits. In comparing traits versus trait plasticities, activity evolved much faster than the plasticity of activity whereas morphological traits evolved much slower than morphological plasticities. Collectively, these results suggest that traits and trait plasticities can exhibit dramatically different evolutionary patterns.


Subject(s)
Adaptation, Physiological , Cues , Animals , Humans , Larva/genetics , Phenotype , Phylogeny
11.
Proc Biol Sci ; 286(1903): 20190673, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31113328

ABSTRACT

Free-living species vary substantially in the extent of their spatial distributions. However, distributions of parasitic species have not been comprehensively compared in this context. We investigated which factors most influence the geographical extent of mammal parasites. Using the Global Mammal Parasite Database we analysed 17 818 individual geospatial records on 1806 parasite species (encompassing viruses, bacteria, protozoa, arthropods and helminths) that infect 396 carnivore, ungulate and primate host species. As a measure of the geographical extent of each parasite species we quantified the number and area of world ecoregions occupied by each. To evaluate the importance of variables influencing the summed area of ecoregions occupied by a parasite species, we used Bayesian network analysis of a subset ( n = 866) of the parasites in our database that had at least two host species and complete information on parasite traits. We found that parasites that covered more geographical area had a greater number of host species, higher average phylogenetic relatedness between host species and more sampling effort. Host and parasite taxonomic groups had weak and indirect effects on parasite ecoregion area; parasite transmission mode had virtually no effect. Mechanistically, a greater number of host species probably increases both the collective abundance and habitat breadth of hosts, providing more opportunities for a parasite to have an expansive range. Furthermore, even though mammals are one of the best-studied animal classes, the ecoregion area occupied by their parasites is strongly sensitive to sampling effort, implying mammal parasites are undersampled. Overall, our results support that parasite geographical extent is largely controlled by host characteristics, many of which are subsumed within host taxonomic identity.


Subject(s)
Ecosystem , Host-Parasite Interactions , Mammals/microbiology , Mammals/parasitology , Parasites/physiology , Animal Distribution , Animals , Bayes Theorem , Geography , Host Specificity , Host-Pathogen Interactions , Mammals/virology , Parasites/classification
12.
J Anim Ecol ; 88(7): 1017-1028, 2019 07.
Article in English | MEDLINE | ID: mdl-30921468

ABSTRACT

Understanding factors that facilitate interspecific pathogen transmission is a central issue for conservation, agriculture, and human health. Past work showed that host phylogenetic relatedness and geographical proximity can increase cross-species transmission, but further work is needed to examine the importance of host traits, and species interactions such as predation, in determining the degree to which parasites are shared between hosts. Here we consider the factors that predict patterns of parasite sharing across a diverse assemblage of 116 wild ungulates (i.e., hoofed mammals in the Artiodactyla and Perissodactyla) and nearly 900 species of micro- and macroparasites, controlling for differences in total parasite richness and host sampling effort. We also consider the effects of trophic links on parasite sharing between ungulates and carnivores. We tested for the relative influence of range overlap, phylogenetic distance, body mass, and ecological dissimilarity (i.e., the distance separating species in a Euclidean distance matrix based on standardized traits) on parasite sharing. We also tested for the effects of variation in study effort as a potential source of bias in our data, and tested whether carnivores reported to feed on ungulates have more ungulate parasites than those that use other resources. As in other groups, geographical range overlap and phylogenetic similarity predicted greater parasite community similarity in ungulates. Ecological dissimilarity showed a weak negative relationship with parasite sharing. Counter to our expectations, differences, not similarity, in host body mass predicted greater parasite sharing between pairs of ungulate hosts. Pairs of well-studied host species showed higher overlap than poorly studied species, although including sampling effort did not reduce the importance of biological traits in our models. Finally, carnivores that feed on ungulates harboured a greater richness of ungulate helminths. Overall, we show that the factors that predict parasite sharing in wild ungulates are similar to those known for other mammal groups, and demonstrate the importance of controlling for heterogeneity in host sampling effort in future analyses of parasite sharing. We also show that ecological interactions, in this case trophic links via predation, can allow sharing of some parasite species among distantly related host species.


Subject(s)
Carnivora , Helminths , Parasites , Animals , Host-Parasite Interactions , Humans , Phylogeny
13.
Evolution ; 72(3): 663-678, 2018 03.
Article in English | MEDLINE | ID: mdl-29345312

ABSTRACT

Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life-history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed-egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait-evolution models, the Ornstein-Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life-history traits and lower for two. These data suggest that the evolution of life-history traits in amphibian embryos is more constrained by a species' position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.


Subject(s)
Adaptation, Physiological , Anura/physiology , Life History Traits , Olfactory Perception , Animals , Anura/growth & development , Astacoidea/chemistry , Biological Evolution , Embryo, Nonmammalian/physiology , Food Chain , Phylogeny , United States
14.
Ecol Evol ; 7(23): 10289-10300, 2017 12.
Article in English | MEDLINE | ID: mdl-29238555

ABSTRACT

Although critical to progress in understanding (i) if, and (ii) at what rate, introduced plants will naturalize and potentially become invasive, establishing causal links between traits and invasion success is complicated by data gaps, phylogenetic nonindependence of species, the inability to control for differences between species in residence time and propagule pressure, and covariance among traits. Here, we focus on statistical relationships between genomic factors, life history traits, native range size, and naturalization status of angiosperms introduced to Australia. In a series of analyses, we alternately investigate the role of phylogeny, incorporate introduction history, and use graphical models to explore the network of conditional probabilities linking traits and introduction history to naturalization status. Applying this ensemble of methods to the largest publicly available data set on plant introductions and their fates, we found that, overall, residence time and native range size best predicted probability of naturalization. Yet, importantly, probability of naturalization consistently increased as genome size decreased, even when the effects of shared ancestry and residence time in Australia were accounted for, and that this pattern was stronger in species without a history of cultivation, but present across annual-biennials, and herbaceous and woody perennials. Thus, despite introduction biases and indirect effects of traits via introduction history, across analyses, reduced genome size was nevertheless consistently associated with a tendency to naturalize.

15.
Ecology ; 98(5): 1476, 2017 May.
Article in English | MEDLINE | ID: mdl-28273333

ABSTRACT

Illuminating the ecological and evolutionary dynamics of parasites is one of the most pressing issues facing modern science, and is critical for basic science, the global economy, and human health. Extremely important to this effort are data on the disease-causing organisms of wild animal hosts (including viruses, bacteria, protozoa, helminths, arthropods, and fungi). Here we present an updated version of the Global Mammal Parasite Database, a database of the parasites of wild ungulates (artiodactyls and perissodactyls), carnivores, and primates, and make it available for download as complete flat files. The updated database has more than 24,000 entries in the main data file alone, representing data from over 2700 literature sources. We include data on sampling method and sample sizes when reported, as well as both "reported" and "corrected" (i.e., standardized) binomials for each host and parasite species. Also included are current higher taxonomies and data on transmission modes used by the majority of species of parasites in the database. In the associated metadata we describe the methods used to identify sources and extract data from the primary literature, how entries were checked for errors, methods used to georeference entries, and how host and parasite taxonomies were standardized across the database. We also provide definitions of the data fields in each of the four files that users can download.


Subject(s)
Database Management Systems , Mammals/parasitology , Parasites , Animals , Animals, Wild , Carnivora , Helminths , Host-Parasite Interactions , Humans
16.
PLoS One ; 12(1): e0167882, 2017.
Article in English | MEDLINE | ID: mdl-28095428

ABSTRACT

Variation in host responses to pathogens can have cascading effects on populations and communities when some individuals or groups of individuals display disproportionate vulnerability to infection or differ in their competence to transmit infection. The fungal pathogen, Batrachochytrium dendrobatidis (Bd) has been detected in almost 700 different amphibian species and is implicated in numerous global amphibian population declines. Identifying key hosts in the amphibian-Bd system-those who are at greatest risk or who pose the greatest risk for others-is challenging due in part to many extrinsic environmental factors driving spatiotemporal Bd distribution and context-dependent host responses to Bd in the wild. One way to improve predictive risk models and generate testable mechanistic hypotheses about vulnerability is to complement what we know about the spatial epidemiology of Bd with data collected through comparative experimental studies. We used standardized pathogen challenges to quantify amphibian survival and infection trajectories across 20 post-metamorphic North American species raised from eggs. We then incorporated trait-based models to investigate the predictive power of phylogenetic history, habitat use, and ecological and life history traits in explaining responses to Bd. True frogs (Ranidae) displayed the lowest infection intensities, whereas toads (Bufonidae) generally displayed the greatest levels of mortality after Bd exposure. Affiliation with ephemeral aquatic habitat and breadth of habitat use were strong predictors of vulnerability to and intensity of infection and several other traits including body size, lifespan, age at sexual maturity, and geographic range also appeared in top models explaining host responses to Bd. Several of the species examined are highly understudied with respect to Bd such that this study represents the first experimental susceptibility data. Combining insights gained from experimental studies with observations of landscape-level disease prevalence may help explain current and predict future pathogen dynamics in the Bd system.


Subject(s)
Amphibians/microbiology , Chytridiomycota/pathogenicity , Communicable Diseases, Emerging/epidemiology , Ecology , Host-Pathogen Interactions , Mycoses/microbiology , Animals , Bufonidae/microbiology , Ecosystem , Phylogeny , Ranidae/microbiology
17.
Ecol Lett ; 19(9): 1159-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27353433

ABSTRACT

Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence.


Subject(s)
Communicable Diseases , Host-Pathogen Interactions , Biodiversity , Communicable Diseases/epidemiology , Communicable Diseases/etiology , Communicable Diseases/transmission , Communicable Diseases/veterinary , Ecology/methods
18.
J Anim Ecol ; 85(3): 624-7, 2016 05.
Article in English | MEDLINE | ID: mdl-26751600

ABSTRACT

We respond to criticism of our recent paper by examining assumptions about the structure of host-parasite networks, and discuss the implications of host extinction on our perception of parasite specificity.


Subject(s)
Host-Parasite Interactions , Parasites , Animals
19.
J Anim Ecol ; 84(4): 978-84, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25640629

ABSTRACT

Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact.


Subject(s)
Endangered Species , Extinction, Biological , Mammals/parasitology , Parasites , Animals , Host-Parasite Interactions , Models, Statistical , Population Density , Species Specificity
20.
Conserv Biol ; 29(2): 452-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25159086

ABSTRACT

A key measure of humanity's global impact is by how much it has increased species extinction rates. Familiar statements are that these are 100-1000 times pre-human or background extinction levels. Estimating recent rates is straightforward, but establishing a background rate for comparison is not. Previous researchers chose an approximate benchmark of 1 extinction per million species per year (E/MSY). We explored disparate lines of evidence that suggest a substantially lower estimate. Fossil data yield direct estimates of extinction rates, but they are temporally coarse, mostly limited to marine hard-bodied taxa, and generally involve genera not species. Based on these data, typical background loss is 0.01 genera per million genera per year. Molecular phylogenies are available for more taxa and ecosystems, but it is debated whether they can be used to estimate separately speciation and extinction rates. We selected data to address known concerns and used them to determine median extinction estimates from statistical distributions of probable values for terrestrial plants and animals. We then created simulations to explore effects of violating model assumptions. Finally, we compiled estimates of diversification-the difference between speciation and extinction rates for different taxa. Median estimates of extinction rates ranged from 0.023 to 0.135 E/MSY. Simulation results suggested over- and under-estimation of extinction from individual phylogenies partially canceled each other out when large sets of phylogenies were analyzed. There was no evidence for recent and widespread pre-human overall declines in diversity. This implies that average extinction rates are less than average diversification rates. Median diversification rates were 0.05-0.2 new species per million species per year. On the basis of these results, we concluded that typical rates of background extinction may be closer to 0.1 E/MSY. Thus, current extinction rates are 1,000 times higher than natural background rates of extinction and future rates are likely to be 10,000 times higher.


Subject(s)
Biological Evolution , Conservation of Natural Resources , Extinction, Biological , Animals , Chordata , Computer Simulation , Fossils , Invertebrates , Models, Biological , Phylogeny , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...