Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(1): e2307209, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37973559

ABSTRACT

Redox flow batteries (RFBs) are a promising technology for long-duration energy storage; but they suffer from inefficiencies in part due to the overvoltages at the electrode surface. In this work, more than 70 electrode treatments are reviewed that are previously shown to reduce the overvoltages and improve performance for vanadium RFBs (VRFBs), the most commercialized RFB technology. However, identifying treatments that improve performance the most and whether they are industrially implementable is challenging. This study attempts to address this challenge by comparing treatments under similar operating conditions and accounting for the treatment process complexity. The different treatments are compared at laboratory and industrial scale based on criteria for VRFB performance, treatment stability, economic feasibility, and ease of industrial implementation. Thermal, plasma, electrochemical oxidation, CO2 treatments, as well as Bi, Ag, and Cu catalysts loaded on electrodes are identified as the most promising for adoption in large scale VRFBs. The similarity in electrode treatments for aqueous-organic RFBs (AORFBs) and VRFBs is also identified. The need of standardization in RFBs testing along with fundamental studies to understand charge transfer reactions in redox active species used in RFBs moving forward is emphasized.

2.
Nat Mater ; 22(1): 92-99, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36280702

ABSTRACT

Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.

3.
Nano Lett ; 19(7): 4712-4720, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31251071

ABSTRACT

An emergent theme in mono- and multivalent ion batteries is to utilize nanoparticles (NPs) as electrode materials based on the phenomenological observations that their short ion diffusion length and large electrode-electrolyte interface can lead to improved ion insertion kinetics compared to their bulk counterparts. However, the understanding of how the NP size fundamentally relates to their electrochemical behaviors (e.g., charge storage mechanism, phase transition associated with ion insertion) is still primitive. Here, we employ spinel λ-MnO2 particles as a model cathode material, which have effective Mg2+ ion intercalation but with their size effect poorly understood to investigate their operating mechanism via a suite of electrochemical and structural characterizations. We prepare two differently sized samples, the small nanoscopic λ-MnO2 particles (81 ± 25 nm) and big micron-sized ones (814 ± 207 nm) via postsynthesis size-selection. Analysis of the charge storage mechanisms shows that the stored charge from Mg2+ ion intercalation dominates in both systems and is ∼10 times higher in small particles than that in the big ones. From both X-ray diffraction and atomic-resolution scanning transmission electron microscopy imaging, we reveal a fundamental difference in phase transition of the differently sized particles during Mg2+ ion intercalation: the small NPs undergo a solid-solution-like phase transition which minimizes lattice mismatch and energy penalty for accommodating new phases, whereas the big particles follow conventional multiphase transformation. We show that this pathway difference is related to the improved electrochemical performance (e.g., rate capability, cycling performance) of small particles over the big ones which provides important insights in encoding within the particle dimension, that is, the single-phase transition pathway in high-performance electrode materials for multivalent ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...