Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 12: e17445, 2024.
Article in English | MEDLINE | ID: mdl-38784393

ABSTRACT

The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D. discoideum commonly hosts endosymbiotic bacteria from three taxa: Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative Paraburkholderia endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. Amoebophilus and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from D. discoideum isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of Paraburkholderia, suggesting a link between unpredictable conditions and symbiosis.


Subject(s)
Dictyostelium , Soil Microbiology , Symbiosis , Dictyostelium/microbiology , Burkholderiaceae/isolation & purification , Soil/chemistry , United States/epidemiology , Chlamydia/isolation & purification
2.
Insects ; 11(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952303

ABSTRACT

Insects face many cognitive challenges as they navigate nutritional landscapes that comprise their foraging environments with potential food items. The emerging field of nutritional geometry (NG) can help visualize these challenges, as well as the foraging solutions exhibited by insects. Social insect species must also make these decisions while integrating social information (e.g., provisioning kin) and/or offsetting nutrients provisioned to, or received from unrelated mutualists. In this review, we extend the logic of NG to make predictions about how cognitive challenges ramify across these social dimensions. Focusing on ants, we outline NG predictions in terms of fundamental and realized nutritional niches, considering when ants interact with related nestmates and unrelated bacterial, fungal, plant, and insect mutualists. The nutritional landscape framework we propose provides new avenues for hypothesis testing and for integrating cognition research with broader eco-evolutionary principles.

SELECTION OF CITATIONS
SEARCH DETAIL
...