Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 91: 209-219, 2019 06.
Article in English | MEDLINE | ID: mdl-31029828

ABSTRACT

Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Patients undergoing cleft palate repair have a high degree of wound healing complications with up to 60% experiencing oronasal fistula (ONF) formation. In this study, we developed a mouse model of hard palate mucosal injury, to study the endogenous injury response during oral cavity wound healing and ONF formation. Immunophenotyping of the inflammatory infiltrate following hard palate injury showed delayed recruitment of non-classical LY6Clo monocytes and failure to resolve inflammation. To induce a pro-regenerative inflammatory response, delivery of FTY720 nanofiber scaffolds following hard palate mucosal injury promoted complete ONF healing and was associated with increased LY6Clo monocytes and pro-regenerative M2 macrophages. Alteration in gene expression with FTY720 delivery included increased Sox2 expression, reduction in pro-inflammatory IL-1, IL-4 and IL-6 and increased pro-regenerative IL-10 expression. Increased keratinocyte proliferation during ONF healing was observed at day 5 following FTY720 delivery. Our results show that local delivery of FTY720 from nanofiber scaffolds in the oral cavity enhances healing of ONF, occurring through multiple immunomodulatory mechanisms. STATEMENT OF SIGNIFICANCE: Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.


Subject(s)
Fingolimod Hydrochloride , Immunomodulation/drug effects , Palate, Hard , Wound Healing , Animals , Cytokines/immunology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Nanofibers/chemistry , Nanofibers/therapeutic use , Palate, Hard/immunology , Palate, Hard/injuries , Palate, Hard/pathology , SOXB1 Transcription Factors/immunology , Wound Healing/drug effects , Wound Healing/immunology
2.
Cell Signal ; 54: 130-138, 2019 02.
Article in English | MEDLINE | ID: mdl-30529759

ABSTRACT

During craniofacial development, cranial neural crest (CNC) cells migrate into the developing face and form bone through intramembranous ossification. Loss of JAGGED1 (JAG1) signaling in the CNC cells is associated with maxillary hypoplasia or maxillary bone deficiency (MBD) in mice and recapitulates the MBD seen in humans with Alagille syndrome. JAGGED1, a membrane-bound NOTCH ligand, is required for normal craniofacial development, and Jagged1 mutations in humans are known to cause Alagille Syndrome, which is associated with cardiac, biliary, and bone phenotypes and these children experience increased bony fractures. Previously, we demonstrated deficient maxillary osteogenesis in Wnt1-cre;Jagged1f/f (Jag1CKO) mice by conditional deletion of Jagged1 in maxillary CNC cells. In this study, we investigated the JAG1 signaling pathways in a CNC cell line. Treatment with JAG1 induced osteoblast differentiation and maturation markers, Runx2 and Ocn, respectively, Alkaline Phosphatase (ALP) production, as well as classic NOTCH1 targets, Hes1 and Hey1. While JAG1-induced Hes1 and Hey1 expression levels were predictably decreased after DAPT (NOTCH inhibitor) treatment, JAG1-induced Runx2 and Ocn levels were surprisingly constant in the presence of DAPT, indicating that JAG1 effects in the CNC cells are independent of the canonical NOTCH pathway. JAG1 treatment of CNC cells increased Janus Kinase 2 (JAK2) phosphorylation, which was refractory to DAPT treatment, highlighting the importance of the non-canonical NOTCH pathway during CNC cells osteoblast commitment. Pharmacologic inhibition of JAK2 phosphorylation, with and without DAPT treatment, upon JAG1 induction reduced ALP production and, Runx2 and Ocn gene expression. Collectively, these data suggest that JAK2 is an essential component downstream of a non-canonical JAG1-NOTCH1 pathway through which JAG1 stimulates expression of osteoblast-specific gene targets in CNC cells that contribute to osteoblast differentiation and bone mineralization.


Subject(s)
Calcification, Physiologic/physiology , Jagged-1 Protein , Janus Kinase 2/physiology , Maxillofacial Development/physiology , Neural Crest , Osteoblasts , Osteogenesis/physiology , Animals , Cells, Cultured , Jagged-1 Protein/pharmacology , Jagged-1 Protein/physiology , Mice , Neural Crest/cytology , Neural Crest/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...