Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 8(1): 444, 2013 Oct 25.
Article in English | MEDLINE | ID: mdl-24160373

ABSTRACT

Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS: 61.46.-w; 68.08.Bc; 81.07.-b.

2.
Langmuir ; 29(11): 3780-90, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23425198

ABSTRACT

The chemical composition of a TiO2 nanoparticle coated paper surface was analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) to study the interconnection between wettability and surface chemistry on the nanoscale. In this work, a superhydrophobic TiO2 surface rich in carboxyl-terminated molecules was created by a liquid flame spray process. The TiO2 nanoparticle coated paper surface can be converted by photocatalytic oxidation into a highly hydrophilic one. Interestingly, the hydrophilic surface can be converted back into a superhydrophobic surface by heat treatment. The results showed that both ultraviolet A (UVA) and oven treatment induce changes in the surface chemistry within a few nanometers of the paper surface. These findings are consistent with those from our previously reported X-ray photoelectron spectroscopy (XPS) analysis, but the ToF-SIMS analysis yields more accurate insight into the surface chemistry.

3.
Langmuir ; 28(6): 3138-45, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22263866

ABSTRACT

Hierarchical roughness is known to effectively reduce the liquid-solid contact area and water droplet adhesion on superhydrophobic surfaces, which can be seen for example in the combination of submicrometer and micrometer scale structures on the lotus leaf. The submicrometer scale fine structures, which are often referred to as nanostructures in the literature, have an important role in the phenomenon of superhydrophobicity and low water droplet adhesion. Although the fine structures are generally termed as nanostructures, their actual dimensions are often at the submicrometer scale of hundreds of nanometers. Here we demonstrate that small nanometric structures can have very different effect on surface wetting compared to the large submicrometer scale structures. Hierarchically rough superhydrophobic TiO(2) nanoparticle surfaces generated by the liquid flame spray (LFS) on board and paper substrates revealed that the nanoscale surface structures have the opposite effect on the droplet adhesion compared to the larger submicrometer and micrometer scale structures. Variation in the hierarchical structure of the nanoparticle surfaces contributed to varying droplet adhesion between the high- and low-adhesive superhydrophobic states. Nanoscale structures did not contribute to superhydrophobicity, and there was no evidence of the formation of the liquid-solid-air composite interface around the nanostructures. Therefore, larger submicrometer and micrometer scale structures were needed to decrease the liquid-solid contact area and to cause the superhydrophobicity. Our study suggests that a drastic wetting transition occurs on superhydrophobic surfaces at the nanometre scale; i.e., the transition between the Cassie-Baxter and Wenzel wetting states will occur as the liquid-solid-air composite interface collapses around nanoscale structures. Consequently, water adheres tightly to the surface by penetrating into the nanostructure. The droplet adhesion mechanism presented in this paper gives valuable insight into a phenomenon of simultaneous superhydrophobicity and high water droplet adhesion and contributes to a more detailed comprehension of superhydrophobicity overall.

4.
Magnes Res ; 22(1): 10-20, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19441270

ABSTRACT

Competitive divalent (magnesium and calcium) or monovalent (potassium, lithium and sodium) ion exchange and its influence on a membrane potential formation was studied at biological ligands (BL) such as adenosine triphosphate (ATP), asparagine (Asn) and glutamine (Gln) sites. The sites are dispersed electrochemically in membranes made of the conducting polymers (CPs)--poly(N-methylpyrrole) (PMPy) and poly(pyrrole) (PPy). The membranes are made sensitive to calcium and magnesium or to potassium, sodium and lithium by optimized electrodeposition and soaking procedures supported by the study of membrane topography and morphology. Distinctively different electrochemical responses, i.e. electrical potential transients or currents, are observed in the case of "antagonistic" calcium and magnesium or potassium and sodium/lithium ion pairs. Dissimilarity in the responses is ascribed to a difference between on site vs. bulk concentrations of ions, and is dictated by different transport properties of the ions, as shown by using the Nernst-Planck-Poisson (NPP) model and the diffusion-layer model (DLM). The method described allows inspecting potential-dependent competitive ion-exchange processes at the biologically active sites. It is suggested that this approach could be used as an auxiliary tool in study of potential dependent block in realistic membrane channels, such as Mg block in the N-methyl D-aspartate receptor channel (NMDA).


Subject(s)
Ion Exchange , Lithium/antagonists & inhibitors , Magnesium/antagonists & inhibitors , Magnesium/physiology , Potassium/physiology , Adenosine Triphosphate/chemistry , Biomimetics , Calcium/physiology , Catalytic Domain , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membranes, Artificial , Polymers/chemistry , Pyrroles/chemistry , Sodium/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...