Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(12): 3630-3640, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35302765

ABSTRACT

High-resolution X-ray techniques were applied to examine the effects of gold nanoparticles (size <5 nm) on natural pulmonary surfactant and pure DPPC monolayers preliminarily formed on water subphase in a Langmuir trough. Hydrophobic and hydrophilic nanoparticles were delivered from nanoaerosol using electrodeposition method. Grazing incidence diffraction, X-ray reflectivity, and X-ray standing wave measurements allow to monitor the changes in molecular organization of lipid monolayer and to locate the position of gold nanoparticles. X-ray experiments were performed over a period of 9-14 h. The obtained results evidenced that, on a long time scale, the deposition of nanoparticles, even at low doses, can induce pronounced alterations in lipid monolayer. The presented data can help to elucidate the mechanism of pulmonary translocation of inhaled nanoparticles that is of special interest for biomedical investigations of potential risk of nanoaerosols for human health.


Subject(s)
Metal Nanoparticles , Pulmonary Surfactants , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Gold/chemistry , Humans , Pulmonary Surfactants/chemistry , X-Ray Diffraction , X-Rays
2.
J Phys Chem B ; 123(40): 8370-8377, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31513409

ABSTRACT

X-ray studies revealed the considerable enhancement of metal-binding properties in human hemoglobin under exposure to mild damaging factors (in the presence of 0.09 M urea or upon heating for 30 min at 50 °C). Changes in the element composition of the hemoglobin monolayer, formed on the water subphase in the Langmuir trough, have been monitored in real time by the total external reflection X-ray fluorescence measurements. X-ray absorption spectroscopy has been applied to study the local environment of zinc ions bound on hemoglobin molecules. According to these data, each zinc ion is coordinated by four ligands, two of which are cysteine and histidine. The oxidative stress has been found to accelerate extensively the enhancement of metal-binding ability in protein. A two-stage mechanism has been proposed as a possible explanation of the observed phenomenon: First, in the presence of the mild damaging agents, protein molecules can undergo a transition from the native conformation to a more labile intermediate state that increases the accessibility of amino acid residues (in particular cysteine). At the second stage, oxidation of cysteine and the subsequent activation of cysteine SH groups can affect markedly the protein-metal interaction. The presented investigations provide a deeper insight into the pathogenesis of metabolic disorders that excessive concentrations of the endogenic toxicants might trigger in an organism.


Subject(s)
Hemoglobins/chemistry , Hemoglobins/metabolism , Metals/metabolism , Humans , Models, Molecular , Protein Binding/drug effects , Protein Conformation , Surface Properties , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...