Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(22): 9864-9877, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37227414

ABSTRACT

Defects play a very important role in semiconductors and only the control over the defect properties allows the implementation of materials in dedicated applications. We present an investigation of the UV luminescence of defects in hexagonal boron nitride (h-BN) grown by Metal Organic Vapor Phase Epitaxy (MOVPE). Such intentionally introduced defects are important for applications like deep UV emission and quantum information. In this work, we performed photoluminescence and cathodoluminescence experiments on a set of h-BN layers grown by MOVPE at different growth temperatures (tgr). The obtained defect-related spectra in the ultraviolet range include well-known lines at about 230 nm (X230, hν = 5.4 eV) and 300 nm (C300 - the brightest one, hν = 4.14 eV) as well as a rarely observed band with a zero-phonon line at 380 nm (C380, hν = 3.24 eV). The C300 and C380 bands have the characteristic of a color centre showing sharp lines (0.6 nm width) at 5 K. These lines are most probably an internal transition of carbon-related defects. We show that for samples grown at high temperatures (tgr > 1200 °C), the lines related to the color centres C are replaced by broad bands at 330 nm and 400 nm, which we marked as D330 and D400, respectively. The D bands have similar central energies to the C bands but extend over a large energy range, so we propose that the D emission is due to a shallow donor to deep acceptor recombination. Time-resolved photoluminescence analysis determined the lifetimes of the individual lines in the range from 0.9 ns (C300), 1.8 ns (C380) to 4 ns (D400). The C300 and C380 color centre bands are composed of a series of characteristic lines that are due to the interaction with phonons. The E1u (198 meV) and A2u (93 meV) phonon replicas have been identified.

2.
Sci Rep ; 11(1): 15506, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34326349

ABSTRACT

We demonstrate quantum emission capabilities from boron nitride structures which are relevant for practical applications and can be seamlessly integrated into a variety of heterostructures and devices. First, the optical properties of polycrystalline BN films grown by metalorganic vapour-phase epitaxy are inspected. We observe that these specimens display an antibunching in the second-order correlation functions, if the broadband background luminescence is properly controlled. Furthermore, the feasibility to use flexible and transparent substrates to support hBN crystals that host quantum emitters is explored. We characterise hBN powders deposited onto polydimethylsiloxane films, which display quantum emission characteristics in ambient environmental conditions.

3.
Nanotechnology ; 27(4): 045704, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26655462

ABSTRACT

We present a novel measurement approach which combines the electrical characterization of solution-gated field-effect transistors based on epitaxial bilayer graphene on 4H-SiC (0001) with simultaneous Raman spectroscopy. By changing the gate voltage, we observed Raman signatures related to the resonant electron-phonon coupling. An analysis of these Raman bands enabled the extraction of the geometrical capacitance of the system and an accurate calculation of the Fermi levels for bilayer graphene. An intentional application of higher gate voltages allowed us to trigger electrochemical reactions, which we followed in situ by Raman spectroscopy. The reactions showed a partially reversible character, as indicated by an emergence/disappearance of peaks assigned to C-H and Si-H vibration modes as well as an increase/decrease of the defect-related Raman D band intensity. Our setup provides a highly interesting platform for future spectroelectrochemical research on electrically-induced sorption processes of graphene on the micrometer scale.

4.
Nano Lett ; 11(4): 1786-91, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21438581

ABSTRACT

We demonstrate the growth of high quality graphene layers by chemical vapor deposition (CVD) on insulating and conductive SiC substrates. This method provides key advantages over the well-developed epitaxial graphene growth by Si sublimation that has been known for decades. (1) CVD growth is much less sensitive to SiC surface defects resulting in high electron mobilities of ∼1800 cm(2)/(V s) and enables the controlled synthesis of a determined number of graphene layers with a defined doping level. The high quality of graphene is evidenced by a unique combination of angle-resolved photoemission spectroscopy, Raman spectroscopy, transport measurements, scanning tunneling microscopy and ellipsometry. Our measurements indicate that CVD grown graphene is under less compressive strain than its epitaxial counterpart and confirms the existence of an electronic energy band gap. These features are essential for future applications of graphene electronics based on wafer scale graphene growth.


Subject(s)
Carbon Compounds, Inorganic/chemistry , Crystallization/methods , Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon Compounds/chemistry , Gases/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
5.
Phys Rev Lett ; 91(22): 226404, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14683260

ABSTRACT

Magnetoluminescence of the exciton bound to a neutral acceptor was measured to investigate the electronic structure of a shallow acceptor center in GaN. The application of magnetic fields along different directions with respect to the crystal c axis allowed us to determine the symmetry of the ground (Gamma(9)) and the first excited state (Gamma(7)) of the acceptor. The observed Zeeman splitting pattern has axial symmetry but can be explained well only by assuming a significant reduction of the spin-orbit interaction for this acceptor state. Because of this reduction, the energy structure of the neutral acceptor is found to be very sensitive to any local, axial perturbation.

SELECTION OF CITATIONS
SEARCH DETAIL
...