Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(6): 2787-2802, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38693568

ABSTRACT

Root-knot nematodes (RKN; Meloidogyne species) are plant pathogens that introduce several effectors in their hosts to facilitate infection. The actual targets and functioning mechanism of these effectors largely remain unexplored. This study illuminates the role and interplay of the Meloidogyne javanica nematode effector ROS suppressor (Mj-NEROSs) within the host plant environment. Mj-NEROSs suppresses INF1-induced cell death as well as flg22-induced callose deposition and reactive oxygen species (ROS) production. A transcriptome analysis highlighted the downregulation of ROS-related genes upon Mj-NEROSs expression. NEROSs interacts with the plant Rieske's iron-sulfur protein (ISP) as shown by yeast-two-hybrid and bimolecular fluorescence complementation. Secreted from the subventral pharyngeal glands into giant cells, Mj-NEROSs localizes in the plastids where it interacts with ISP, subsequently altering electron transport rates and ROS production. Moreover, our results demonstrate that isp Arabidopsis thaliana mutants exhibit increased susceptibility to M. javanica, indicating ISP importance for plant immunity. The interaction of a nematode effector with a plastid protein highlights the possible role of root plastids in plant defense, prompting many questions on the details of this process.


Subject(s)
Arabidopsis , Electron Transport Complex III , Plant Immunity , Plastids , Reactive Oxygen Species , Tylenchoidea , Reactive Oxygen Species/metabolism , Arabidopsis/parasitology , Arabidopsis/immunology , Arabidopsis/genetics , Tylenchoidea/physiology , Tylenchoidea/pathogenicity , Animals , Plastids/metabolism , Electron Transport Complex III/metabolism , Plant Diseases/parasitology , Plant Diseases/immunology , Helminth Proteins/metabolism , Helminth Proteins/genetics , Gene Expression Regulation, Plant , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Binding , Mutation/genetics , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics
2.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472863

ABSTRACT

Cultivating wheat (Triticum aestivum) in a closed environment offers applications in both indoor farming and in outer-space farming. Tailoring the photoperiod holds potential to shorten the growth cycle, thereby increasing the annual number of cycles. As wheat is a long-day plant, a night shorter than a critical length is required to induce flowering. In growth chambers, experiments were conducted to examine the impact of a 6 h light-dark cycle on the timing of wheat ear emergence, grain yield, and flour quality. Under equal daily light-integral conditions, the 6 h light-dark cycle promoted growth and development, resulting in accelerated ear emergence when compared to a 12 h cycle, additionally indicating that 12 h of darkness was excessive. To further stimulate heading and increase yield, the 6 h cycle was changed at the onset of stem elongation to a 14 h-10 h, mimicking spring conditions, and maintained until maturity. This successful transition was then combined with two levels of light intensity and nutrient solution, which did not significantly impact yield, while tillering and grain ripening did increase under higher light intensities. Moreover, it enabled manipulation of the baking quality, although lower-end falling numbers were observed. In conclusion, combining a 6 h light-dark cycle until stem elongation with a 14 h-10 h cycle presents a promising strategy for increasing future wheat production in closed environments. The observation of low falling numbers underscores the importance of factoring in flour quality when designing the wheat-growing systems of the future.

3.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-38214910

ABSTRACT

Stem respiration (RS) substantially contributes to the return of photo assimilated carbon to the atmosphere and, thus, to the tree and ecosystem carbon balance. Stem CO2 efflux (ECO2) is often used as a proxy for RS. However, this metric has often been challenged because of the uncertain origin of CO2 emitted from the stem due to post-respiratory processes. In this Insight, we (i) describe processes affecting the quantification of RS, (ii) review common methodological approaches to quantify and model RS and (iii) develop a research agenda to fill the most relevant knowledge gaps that we identified. Dissolution, transport and accumulation of respired CO2 away from its production site, reassimilation of respired CO2 via stem photosynthesis and the enzyme phosphoenolpyruvate carboxylase, axial CO2 diffusion in the gas phase, shifts in the respiratory substrate and non-respiratory oxygen (O2) consumption are the most relevant processes causing divergence between RS and measured stem gas exchange (ECO2 or O2 influx, IO2). Two common methodological approaches to estimate RS, namely the CO2 mass balance approach and the O2 consumption technique, circumvent some of these processes but have yielded inconsistent results regarding the fate of respired CO2. Stem respiration modelling has recently progressed at the organ and tree levels. However, its implementation in large-scale models, commonly operated from a source-driven perspective, is unlikely to reflect adequate mechanisms. Finally, we propose hypotheses and approaches to advance the knowledge of the stem carbon balance, the role of sap pH on RS, the reassimilation of respired CO2, RS upscaling procedures, large-scale RS modelling and shifts in respiratory metabolism during environmental stress.


Subject(s)
Carbon Dioxide , Trees , Trees/metabolism , Carbon Dioxide/metabolism , Ecosystem , Biological Transport , Carbon/metabolism , Plant Stems/metabolism
4.
Front Plant Sci ; 14: 1129335, 2023.
Article in English | MEDLINE | ID: mdl-37600174

ABSTRACT

Light and its spectral characteristics are crucial for plant growth and development. The far-red photon flux mediates many plant processes through the action of phytochrome and also accelerates the photosynthetic electron transfer rate. In this study, we assessed the effects of far-red addition on butterhead lettuce morphology, light use efficiency, optical properties, and phytochemical characteristics. Three-week-old lettuce plants (Lactuca sativa L. cv. Alyssa) were grown for up to 28 days under a 10% blue and 90% red light spectrum (200 µmol m-2 s-1, 16 h photoperiod) to which five different intensities of far-red light (peak at 735 nm) were added (0-9-18-36-72 µmol m-2 s-1). White light-emitting diodes were included as a proxy for sunlight. Increasing supplemental far-red photon flux from zero to 21% increased the light use efficiency (g per mol) by 37% on day 14; 43% on day 21; and 39% on day 28. Measurements of projected head area suggest that this was associated with an increase in leaf expansion and photon capture and not necessarily a direct effect on photosynthesis. Moreover, vegetation indices based on leaf reflectance showed a decrease in chlorophyll-related indices under a high far-red photon flux. This decrease in pigment content was confirmed by chemical analyses, suggesting that the plants may not reach their full potential in terms of photon capture, limiting the overall photosynthetic performance. Furthermore, the stress-related Carter 1 index increased in plants grown under a high far-red photon flux, indicating early plant stress. Far-red tended to decrease the content of total phenolics and increase soluble sugars. The higher sugar levels can be attributed to an improved photochemical efficiency due to photosystem I excitation by far-red wavelengths, also known as the Emerson Enhancement effect. Despite these higher sugar levels, no effect on foliar nitrate content was observed. Our results show that far-red supplementation has the potential to enhance light interception at the early growth stages, although higher intensities of far-red may cause plant stress.

5.
Plant Cell Environ ; 46(9): 2747-2762, 2023 09.
Article in English | MEDLINE | ID: mdl-37427808

ABSTRACT

Tropical forests are experiencing increases in vapour pressure deficit (D), with possible negative impacts on tree growth. Tree-growth reduction due to rising D is commonly attributed to carbon limitation, thus overlooking the potentially important mechanism of D-induced impairment of wood formation due to an increase in turgor limitation. Here we calibrate a mechanistic tree-growth model to simulate turgor limitation of radial stem growth in mature Toona cilitata trees in an Asian tropical forest. Hourly sap flow and dendrometer measurements were collected to simulate turgor-driven growth during the growing season. Simulated seasonal patterns of radial stem growth matched well with growth observations. Growth mainly occurred at night and its pre-dawn build-up appeared to be limited under higher D. Across seasons, the night-time turgor pressure required for growth was negatively related to previous midday D, possibly due to a relatively high canopy conductance at high D, relative to stem rehydration. These findings provide the first evidence that tropical trees grow at night and that turgor pressure limits tree growth. We suggest including turgor limitation of tree stem growth in models also for tropical forest carbon dynamics, in particular, if these models simulate effects of warming and increased frequency of droughts.


Subject(s)
Rainforest , Trees , Vapor Pressure , Water , Forests , Carbon , Tropical Climate
6.
Tree Physiol ; 43(10): 1731-1744, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37471648

ABSTRACT

The carbon isotope composition of respired CO2 (δ13CR) and bulk organic matter (δ13CB) of various plant compartments informs about the isotopic fractionation and substrate of respiratory processes, which are crucial to advance the understanding of carbon allocation in plants. Nevertheless, the variation across organs, species and seasons remains poorly understood. Cavity Ring-Down Laser Spectroscopy was applied to measure δ13CR in leafy shoots and woody stems of maple (Acer platanoides L.), oak (Quercus robur L.) and cedar (Thuja occidentalis L.) trees during spring and late summer. Photosynthesis, respiration, growth and non-structural carbohydrates were measured in parallel to evaluate potential drivers for respiratory fractionation. The CO2 respired by maple and oak shoots was 13C-enriched relative to δ13CB during spring, but not late summer or in the stem. In cedar, δ13CR did not vary significantly throughout organs and seasons, with respired CO2 being 13C-depleted relative to δ13CB. Shoot δ13CR was positively related to leaf starch concentration in maple, while stem δ13CR was inversely related to stem growth. These relations were not significant for oak or cedar. The variability in δ13CR suggests (i) different contributions of respiratory pathways between organs and (ii) seasonality in the respiratory substrate and constitutive compounds for wood formation in deciduous species, less apparent in evergreen cedar, whose respiratory metabolism might be less variable.


Subject(s)
Carbon Dioxide , Trees , Seasons , Trees/physiology , Carbon Dioxide/metabolism , Carbon Isotopes/analysis , Carbon/metabolism , Plant Leaves/metabolism
7.
New Phytol ; 239(2): 533-546, 2023 07.
Article in English | MEDLINE | ID: mdl-37235688

ABSTRACT

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Subject(s)
Plant Leaves , Trees , Trees/physiology , Plant Leaves/physiology , Xylem/physiology , Water/physiology , Droughts , Fluid Therapy
8.
Plant Cell Environ ; 46(9): 2680-2693, 2023 09.
Article in English | MEDLINE | ID: mdl-37219237

ABSTRACT

Tree stem respiration (RS ) is a substantial component of the forest carbon balance. The mass balance approach uses stem CO2 efflux and internal xylem fluxes to sum up RS , while the oxygen-based method assumes O2 influx as a proxy of RS . So far, both approaches have yielded inconsistent results regarding the fate of respired CO2 in tree stems, a major challenge for quantifying forest carbon dynamics. We collected a data set of CO2 efflux, O2 influx, xylem CO2 concentration, sap flow, sap pH, stem temperature, nonstructural carbohydrates concentration and potential phosphoenolpyruvate carboxylase (PEPC) capacity on mature beech trees to identify the sources of differences between approaches. The ratio of CO2 efflux to O2 influx was consistently below unity (0.7) along a 3-m vertical gradient, but internal fluxes did not bridge the gap between influx and efflux, nor did we find evidence for changes in respiratory substrate use. PEPC capacity was comparable with that previously reported in green current-year twigs. Although we could not reconcile differences between approaches, results shed light on the uncertain fate of CO2 respired by parenchyma cells across the sapwood. Unexpected high values of PEPC capacity highlight its potential relevance as a mechanism of local CO2 removal, which merits further research.


Subject(s)
Fagus , Trees , Carbon Dioxide , Forests , Carbon , Plant Stems
9.
Tree Physiol ; 43(9): 1691-1703, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37216651

ABSTRACT

Accurate determination of sap flow over a wide measurement range is important for assessing tree transpiration. However, this is difficult to achieve by using a single heat pulse method. Recent attempts have been made to combine multiple heat pulse methods and have successfully increased the sap flow measurement range. However, relative performance of different dual methods has not yet been addressed, and selection of the numerical threshold used to switch between methods has not been verified among different dual methods. This paper evaluates three different dual methods with respect to measurement range, precision and sources of uncertainty: (method 1) the heat ratio (HR) and compensation heat pulse method; (method 2) the HR and T-max method; and (method 3) the HR and double ratio method. Field experiments showed that methods 1, 2 with three needles and 3 compare well with the benchmark Sapflow+ method, having root mean square deviations of 4.7 cm h-1, 3.0 cm h-1 and 2.4 cm h-1, respectively. The three dual methods are equivalent in accuracy (P > 0.05). Moreover, all dual methods can satisfactorily measure reverse, low and medium heat pulse velocities. However, for high velocities (>100 cm h-1), the HR + T-max (method 2) performed better than the other methods. Another advantage is that this method has a three- instead of four-needle probe configuration, making it less error prone to probe misalignment and plant wounding. All dual methods in this study use the HR method for calculating low to medium flow and a different method for calculating high flow. The optimal threshold for switching from HR to another method is HR's maximum flow, which can be accurately determined from the Péclet number. This study therefore provides guidance for an optimal selection of methods for quantification of sap flow over a wide measurement range.


Subject(s)
Hot Temperature , Research Design , Trees , Biological Transport , Plant Transpiration
10.
Sci Total Environ ; 872: 162167, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36775147

ABSTRACT

Forests account for nearly 90 % of the world's terrestrial biomass in the form of carbon and they support 80 % of the global biodiversity. To understand the underlying forest dynamics, we need a long-term but also relatively high-frequency, networked monitoring system, as traditionally used in meteorology or hydrology. While there are numerous existing forest monitoring sites, particularly in temperate regions, the resulting data streams are rarely connected and do not provide information promptly, which hampers real-time assessments of forest responses to extreme climate events. The technology to build a better global forest monitoring network now exists. This white paper addresses the key structural components needed to achieve a novel meta-network. We propose to complement - rather than replace or unify - the existing heterogeneous infrastructure with standardized, quality-assured linking methods and interacting data processing centers to create an integrated forest monitoring network. These automated (research topic-dependent) linking methods in atmosphere, biosphere, and pedosphere play a key role in scaling site-specific results and processing them in a timely manner. To ensure broad participation from existing monitoring sites and to establish new sites, these linking methods must be as informative, reliable, affordable, and maintainable as possible, and should be supplemented by near real-time remote sensing data. The proposed novel meta-network will enable the detection of emergent patterns that would not be visible from isolated analyses of individual sites. In addition, the near real-time availability of data will facilitate predictions of current forest conditions (nowcasts), which are urgently needed for research and decision making in the face of rapid climate change. We call for international and interdisciplinary efforts in this direction.

11.
New Phytol ; 237(2): 423-440, 2023 01.
Article in English | MEDLINE | ID: mdl-36259090

ABSTRACT

During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.


Subject(s)
Carbohydrates , Triticum , Triticum/metabolism , Water/metabolism , Edible Grain/metabolism , Biological Transport , Droughts
13.
Plants (Basel) ; 11(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35270060

ABSTRACT

The impact of salinity on the physiological and biochemical parameters of tolerant ('Bonica') and susceptible ('Black Beauty') eggplant varieties (Solanum melongena L.) was determined. The results revealed that the increase in salinity contributes to a significant decline in net photosynthesis (An) in both varieties; however, at the highest salt concentration (160 mM NaCl), the decrease in photorespiration (Rl) was less pronounced in the tolerant cultivar 'Bonica'. Stomatal conductance (gs) was significantly reduced in 'Black Beauty' following exposure to 40 mM NaCl. However, gs of 'Bonica' was only substantially reduced at the highest level of NaCl (160 mM). In addition, a significant decrease in Chla, Chlb, total Chl, Chla/b and carotenoids (p > 0.05) was found in 'Black Beauty', and soluble carbohydrates accumulation and electrolyte leakage (EL) were more pronounced in 'Black Beauty' than in 'Bonica'. The total phenols increase in 'Bonica' was 65% higher than in 'Black Beauty'. In 'Bonica', the roots displayed the highest enzyme scavenging activity compared to the leaves. Salt stress contributes to a significant augmentation of root catalase and guaiacol peroxidase activities. In 'Bonica', the Na concentration was higher in roots than in leaves, whereas in 'Black Beauty', the leaves accumulated more Na. Salt stress significantly boosted the Na/K ratio in 'Black Beauty', while no significant change occurred in 'Bonica'. ACC deaminase activity was significantly higher in 'Bonica' than in 'Black Beauty'.

14.
Ecol Lett ; 25(5): 1164-1176, 2022 May.
Article in English | MEDLINE | ID: mdl-35229970

ABSTRACT

Climatic niche evolution during the diversification of tropical plants has received little attention in Africa. To address this, we characterised the climatic niche of >4000 tropical African woody species, distinguishing two broad bioclimatic groups (forest vs. savanna) and six subgroups. We quantified niche conservatism versus lability at the genus level and for higher clades, using a molecular phylogeny of >800 genera. Although niche stasis at speciation is prevalent, numerous clades individually cover vast climatic spaces suggesting a general ease in transcending ecological limits, especially across bioclimatic subgroups. The forest biome was the main source of diversity, providing many lineages to savanna, but reverse shifts also occurred. We identified clades that diversified in savanna after shifts from forest. The forest-savanna transition was not consistently associated with a growth form change, though we found evolutionarily labile clades whose presence in forest or savanna is associated respectively with climbing or shrubby species diversification.


Subject(s)
Ecosystem , Forests , Africa , Phylogeny , Plants
15.
Front Plant Sci ; 13: 775652, 2022.
Article in English | MEDLINE | ID: mdl-35173756

ABSTRACT

Pre-anthesis drought is expected to greatly increase yield losses in wheat (Triticum aestivum L.), one of the most important crops worldwide. Most studies investigate the effects of pre-anthesis drought only at maturity. The physiology of the plant before anthesis and how it is affected during drought is less studied. Our study focused on physiological patterns in wheat plants during pre- and post-anthesis drought. To this end, we measured leaf xylem water potential, osmotic potential and water content in different plant parts at a high temporal frequency: every 3 days, three times a day. The experiment started just before booting until 2 weeks after flowering. Drought stress was induced by withholding irrigation with rewatering upon turgor loss, which occurred once before and once after anthesis. The goal was to investigate the patterns of osmotic adjustment, when it is used for protection against drought, and if the strategy changes during the phenological development of the plant. Our data gave no indication of daily osmotic adjustment, but did show a delicate control of the osmotic potential during drought in both leaves and stem. Under high drought stress, osmotic potential decreased to avoid further water loss. Before anthesis, rewatering restored leaf water potential and osmotic potential quickly. After anthesis, rewatering restored water potential in the flag leaves, but the osmotic potential in the stem and flag leaf remained low longer. Osmotic adjustment was thus maintained longer after anthesis, showing that the plants invest more energy in the osmotic adjustment after anthesis than before anthesis. We hypothesize that this is because the plants consider the developing ear after anthesis a more important carbohydrate sink than the stem, which is a carbohydrate sink before anthesis, to be used later as a reserve. Low osmotic potential in the stem allowed turgor maintenance, while the low osmotic potential in the flag leaf led to an increase in leaf turgor beyond the level of the control plants. This allowed leaf functioning under drought and assured that water was redirected to the flag leaf and not used to refill the stem storage.

16.
Ann Bot ; 129(5): 555-566, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35141741

ABSTRACT

BACKGROUND AND AIMS: Foliar water uptake has recently been suggested as a possible mechanism for the restoration of hydraulically dysfunctional xylem vessels. In this paper we used a combination of ecophysiological measurements, X-ray microcomputed tomography and cryo-scanning electron microscopy during a drought treatment to fully evaluate this hypothesis. KEY RESULTS: Based on an assessment of these methods in beech (Fagus sylvatica L.) seedlings we were able to (1) confirm an increase in the amount of hydraulically redistributed water absorbed by leaves when the soil water potential decreased, and (2) locate this redistributed water in hydraulically active vessels in the stem. However, (3) no embolism repair was observed irrespective of the organ under investigation (i.e. stem, petiole or leaf) or the intensity of drought. CONCLUSIONS: Our data provide evidence for a hydraulic pathway from the leaf surface to the stem xylem following a water potential gradient, but this pathway exists only in functional vessels and does not play a role in embolism repair for beech.


Subject(s)
Embolism , Fagus , Droughts , Embolism/metabolism , Plant Leaves/physiology , Water/metabolism , X-Ray Microtomography , Xylem/physiology
17.
Plant Cell Environ ; 45(4): 1270-1285, 2022 04.
Article in English | MEDLINE | ID: mdl-34914118

ABSTRACT

Stem respiration (RS ) plays a crucial role in plant carbon budgets. However, its poor understanding limits our ability to model woody tissue and whole-tree respiration. A biophysical model of stem water and carbon fluxes (TReSpire) was calibrated on cedar, maple and oak trees during spring and late summer. For this, stem sap flow, water potential, diameter variation, temperature, CO2 efflux, allometry and biochemistry were monitored. Shoot photosynthesis (PN ) and nonstructural carbohydrates (NSC) were additionally measured to evaluate source-sink relations. The highest RS and stem growth was found in maple and oak during spring, both being seasonally decoupled from PN and [NSC]. Temperature largely affected maintenance respiration (RM ) in the short term, but temperature-normalized RM was highly variable on a seasonal timescale. Overall, most of the respired CO2 radially diffused to the atmosphere (>87%) while the remainder was transported upward with the transpiration stream. The modelling exercise highlights the sink-driven behaviour of RS and the significance of overall metabolic activity on nitrogen (N) allocation patterns and N-normalized respiratory costs to capture RS variability over the long term. These insights should be considered when modelling plant respiration, whose representation is currently biased towards a better understanding of leaf metabolism.


Subject(s)
Acer , Xylem , Carbon/metabolism , Carbon Dioxide/metabolism , Plant Stems/metabolism , Respiration , Seasons , Trees/metabolism , Water/metabolism , Xylem/metabolism
18.
Plant Physiol ; 188(1): 268-284, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34718790

ABSTRACT

The timing of abiotic stress elicitors on wood formation largely affects xylem traits that determine xylem efficiency and vulnerability. Nonetheless, seasonal variability of elevated CO2 (eCO2) effects on tree functioning under drought remains largely unknown. To address this knowledge gap, 1-year-old aspen (Populus tremula L.) trees were grown under ambient (±445 ppm) and elevated (±700 ppm) CO2 and exposed to an early (spring/summer 2019) or late (summer/autumn 2018) season drought event. Stomatal conductance and stem shrinkage were monitored in vivo as xylem water potential decreased. Additional trees were harvested for characterization of wood anatomical traits and to determine vulnerability and desorption curves via bench dehydration. The abundance of narrow vessels decreased under eCO2 only during the early season. At this time, xylem vulnerability to embolism formation and hydraulic capacitance during severe drought increased under eCO2. Contrastingly, stomatal closure was delayed during the late season, while hydraulic vulnerability and capacitance remained unaffected under eCO2. Independently of the CO2 treatment, elastic, and inelastic water pools depleted simultaneously after 50% of complete stomatal closure. Our results suggest that the effect of eCO2 on drought physiology and wood traits are small and variable during the growing season and question a sequential capacitive water release from elastic and inelastic pools as drought proceeds.


Subject(s)
Carbon Dioxide/adverse effects , Cell Plasticity/drug effects , Dehydration/complications , Plant Development/drug effects , Populus/anatomy & histology , Populus/growth & development , Xylem/anatomy & histology , Xylem/growth & development , Droughts , Seasons
19.
Front Plant Sci ; 12: 602550, 2021.
Article in English | MEDLINE | ID: mdl-34149742

ABSTRACT

Due to its high sensitivity and specificity for tumor detection, positron emission tomography (PET) has become a standard and widely used molecular imaging technique. Given the popularity of PET, both clinically and preclinically, its use has been extended to study plants. However, only a limited number of research groups worldwide report PET-based studies, while we believe that this technique has much more potential and could contribute extensively to plant science. The limited application of PET may be related to the complexity of putting together methodological developments from multiple disciplines, such as radio-pharmacology, physics, mathematics and engineering, which may form an obstacle for some research groups. By means of this manuscript, we want to encourage researchers to study plants using PET. The main goal is to provide a clear description on how to design and execute PET scans, process the resulting data and fully explore its potential by quantification via compartmental modeling. The different steps that need to be taken will be discussed as well as the related challenges. Hereby, the main focus will be on, although not limited to, tracing 11CO2 to study plant carbon dynamics.

20.
Front Plant Sci ; 12: 599824, 2021.
Article in English | MEDLINE | ID: mdl-34113357

ABSTRACT

Selection of high-yielding traits in cereal plants led to a continuous increase in productivity. However, less effort was made to select on adaptive traits, favorable in adverse and harsh environments. Under current climate change conditions and the knowledge that cereals are staple foods for people worldwide, it is highly important to shift focus to the selection of traits related to drought tolerance, and to evaluate new tools for efficient selection. Here, we explore the possibility to use vulnerability to drought-induced xylem embolism of wheat cultivars Excalibur and Hartog (Triticum aestivum L.), rye cultivar Duiker Max (Secale cereale L.), and triticale cultivars Dublet and US2014 (x Triticosecale Wittmack) as a proxy for their drought tolerance. Multiple techniques were combined to underpin this hypothesis. During bench-top dehydration experiments, acoustic emissions (AEs) produced by formation of air emboli were detected, and hydraulic capacitances quantified. By only looking at the AE50 values, one would classify wheat cultivar Excalibur as most tolerant and triticale cultivar Dublet as most vulnerable to drought-induced xylem embolism, though Dublet had significantly higher hydraulic capacitances, which are essential in terms of internal water storage to temporarily buffer or delay water shortage. In addition, xylem anatomical traits revealed that both cultivars have a contrasting trade-off between hydraulic safety and efficiency. This paper emphasizes the importance of including a cultivar's hydraulic capacitance when evaluating its drought response and vulnerability to drought-induced xylem embolism, instead of relying on the AE50 as the one parameter.

SELECTION OF CITATIONS
SEARCH DETAIL
...