Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann For Sci ; 74(1): 8, 2017.
Article in English | MEDLINE | ID: mdl-28250710

ABSTRACT

KEY MESSAGE: Trees with otherwise equal dimensions have different leaf areas if they are located in different stand types. While leaf area of European larch is affected by mixture proportion, leaf area of Norway spruce is affected by stand density. CONTEXT: Leaf area is a key parameter for evaluating growth efficiency of trees, and therefore needs to be measured as consistently and accurately as possible. This is even more important when comparing monospecific and mixed stands. AIMS: The aim of the study is to find combinations of parameters and allometric relationships that can be used to estimate accurately the leaf area of individual trees. METHODS: Allometries of the measured leaf area of 194 trees in 12 stands were analysed in order to find variables affecting leaf area. Existing functions from the literature were validated. Finally, models were fitted to find the most appropriate method for estimating leaf area of mixed and monospecific stands of Norway spruce and European larch. RESULTS: Allometric relationships of leaf area to other measurable characteristics of trees vary in different stand types. Besides individual tree dimensions such as diameter and crown surface area, leaf area of Norway spruce is related to stand density, whereas the leaf area of European larch is dependent on the admixture of Norway spruce in the stand. CONCLUSION: In contrast to models for estimating individual tree leaf area of Norway spruce, models for leaf area of European larch have to consider mixture proportions in order to correctly interpret the growth efficiency of mixed stands.

2.
Trees (Berl West) ; 30: 1237-1244, 2016.
Article in English | MEDLINE | ID: mdl-27471347

ABSTRACT

KEY MESSAGE: The specific leaf area of European larch depends on branch height and canopy depth, indicating that both, the effect of hydraulic limitations and low water potentials in greater branch heights, and light availability affect specific leaf area. ABSTRACT: Specific leaf area (SLA) is defined as the ratio between projected leaf area and needle dry mass. It often serves as parameter in ecosystem modelling as well as indicator for potential growth rate. We explore the SLA of European larch (Larix decidua) and the most important factors which have an influence on it. Data were collected from eight stands in Styria, Austria. The stands varied in age, elevation and species mixture. Four stands were pure larch stands with only minor proportions of Norway spruce (Picea abies), whereas the other four were mixed stands of larch and spruce. In each stand 15 representative sample trees were felled. The crown of each sample tree was divided into three sections of equal length and in each section a random sample of needles was taken for determining projected leaf area and dry mass of 50 needles. The mean SLA of larch was established to be 117 cm2 g-1 with a standard deviation of ±27.9 cm2 g-1. SLA varies within the crown, but neither between different mixtures nor years of observation nor social position of the trees. A mixed-effects model, with the plots as random effect, revealed that SLA of larch decreased with increasing branch height (p = 0.0012) and increased with increasing canopy depth (p = 0.029). We conclude that both the hydraulic limitations due to low water potentials in greater branch heights and light availability affect specific leaf area.

3.
For Ecol Manage ; 288: 49-59, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-25540477

ABSTRACT

Silviculture focuses on establishing forest stand conditions that improve the stand increment. Knowledge about the efficiency of an individual tree is essential to be able to establish stand structures that increase tree resource use efficiency and stand level production. Efficiency is often expressed as stem growth per unit leaf area (leaf area efficiency), or per unit of light absorbed (light use efficiency). We tested the hypotheses that: (1) volume increment relates more closely with crown light absorption than leaf area, since one unit of leaf area can receive different amounts of light due to competition with neighboring trees and self-shading, (2) dominant trees use light more efficiently than suppressed trees and (3) thinning increases the efficiency of light use by residual trees, partially accounting for commonly observed increases in post-thinning growth. We investigated eight even-aged Norway spruce (Picea abies (L.) Karst.) stands at Bärnkopf, Austria, spanning three age classes (mature, immature and pole-stage) and two thinning regimes (thinned and unthinned). Individual leaf area was calculated with allometric equations and absorbed photosynthetically active radiation was estimated for each tree using the three-dimensional crown model Maestra. Absorbed photosynthetically active radiation was only a slightly better predictor of volume increment than leaf area. Light use efficiency increased with increasing tree size in all stands, supporting the second hypothesis. At a given tree size, trees from the unthinned plots were more efficient, however, due to generally larger tree sizes in the thinned stands, an average tree from the thinned treatment was superior (not congruent in all plots, thus only partly supporting the third hypothesis).

4.
For Ecol Manage ; 260(10): 1735-1753, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21151352

ABSTRACT

Height:diameter ratios are an important measure of stand stability. Because of the importance of height:diameter ratios for forest management, individual-tree growth models should correctly depict height:diameter ratios. In particular, (i) height:diameter ratios should not exceed that of very dense stands, (ii) height:diameter ratios should not fall below that of open-grown trees, (iii) height:diameter ratios should decrease with increasing spacing, (iv) height:diameter ratios for suppressed trees should be higher than ratios for dominant trees. We evaluated the prediction of height:diameter ratios by running four commonly used individual-tree growth models in central Europe: BWIN, Moses, Silva and Prognaus. They represent different subtypes of individual-tree growth models, namely models with and without an explicit growth potential and models that are either distance-dependent (spatial) or distance-independent (non-spatial). Note that none of these simulators predict height:diameter ratios directly. We began by building a generic simulator that contained the relevant equations for diameter increment, height increment, and crown size for each of the four simulators. The relevant measures of competition, site characteristics, and stand statistics were also coded. The advantage of this simulator was that it ensured that no additional constraint was being imposed on the growth equations, and that initial conditions were identical. We then simulated growth for a 15- and 30-year period for Austrian permanent research plots in Arnoldstein and in Litschau, which represent stands at different age-classes and densities. We also simulated growth of open-grown trees and compared the results to the literature. We found that the general pattern of height:diameter ratios was correctly predicted by all four individual-tree growth models, with height:diameter ratios above that of open-grown trees and below that of very dense stands. All models showed a decrease of height:diameter ratios with age and an increase with stand density. Also, the height:diameter ratios of dominant trees were always lower than that of mean trees. Although in some cases the observed and predicted height:diameter ratios matched well, there were cases where discrepancies between observed and predicted height:diameter ratios would be unacceptable for practical management predictions.

5.
For Ecol Manage ; 260(9): 1498-1506, 2010 Sep 30.
Article in English | MEDLINE | ID: mdl-21072126

ABSTRACT

Since individual tree leaf area is an important measure for productivity as well as for site occupancy, it is of high interest in many studies about forest growth. The exact determination of leaf area is nearly impossible. Thus, a common way to get information about leaf area is to use substitutes. These substitutes are often variables which are collected in a destructive way which is not feasible for long term studies. Therefore, this study aimed at testing the applicability of using substitutes for leaf area which could be collected in a non-destructive way, namely crown surface area and crown projection area. In 8 stands of Norway spruce (Picea abies L. Karst.), divided into three age classes and two thinning treatments, a total of 156 trees were felled in order to test the relationship between leaf area and crown surface area and crown projection area, respectively. Individual tree leaf area of the felled sample trees was estimated by 3P-branch sampling with an accuracy of ±10%. Crown projection area and crown surface area were compared with other, more commonly used, but destructive predictors of leaf area, namely sapwood area at different heights on the bole. Our investigations confirmed findings of several studies that sapwood area is the most precise measure for leaf area because of the high correlation between sapwood area and the leaf area. But behind sapwood area at crown base and sapwood area at three tenth of the tree height the predictive ability of crown surface area was ranked third and even better than that of sapwood area at breast height (R(2) = 0.656 compared with 0.600). Within the stands leaf area is proportional to crown surface area. Using the pooled data of all stands a mixed model approach showed that additionally to crown surface area dominant height and diameter at breast height (dbh) improved the leaf area estimates. Thus, taking dominant height and dbh into account, crown surface area can be recommended for estimating the leaf area of individual trees. The resulting model was in line with many other findings on the leaf area and leaf mass relationships with crown size. From the additional influence of dominant height and dbh in the leaf area model we conclude that the used crown model could be improved by estimating the position of the maximum crown width and the crown width at the base of the crown depending on these two variables.

6.
Nature ; 451(7180): E1-3; discussion E3-4, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18272968

ABSTRACT

Magnani et al. present a very strong correlation between mean lifetime net ecosystem production (NEP, defined as the net rate of carbon (C) accumulation in ecosystems) and wet nitrogen (N) deposition. For their data in the range 4.9-9.8 kg N ha(-1) yr(-1), on which the correlation largely depends, the response is approximately 725 kg C per kg N in wet deposition. According to the authors, the maximum N wet deposition level of 9.8 kg N ha(-1) yr(-1) is equivalent to a total deposition of 15 kg N ha(-1 )yr(-1), implying a net sequestration near 470 kg C per kg N of total deposition. We question the ecological plausibility of the relationship and show, from a multi-factor analysis of European forest measurements, how interactions with site productivity and environment imply a much smaller NEP response to N deposition.


Subject(s)
Carbon/metabolism , Ecosystem , Ecology , Europe , Nitrogen/metabolism , Trees/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...