Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spine (Phila Pa 1976) ; 33(24): 2618-22, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19011543

ABSTRACT

STUDY DESIGN: Biomechanical analysis. OBJECTIVE: To determine the relative strengths of 2 different forms of revision spinal instrumentation using a validated, constant load, cyclic testing mechanism. SUMMARY OF BACKGROUND DATA: Spinal fusion with instrumentation procedures are on the rise. As such, so are revision procedures. A few studies have looked at revision instrumentation techniques. Both increased pedicle screw diameter as well as cement augmentation of pedicle screw fixation have been proposed, used clinically and tested biomechanically. To our knowledge, no comparative study exists between these techniques. METHODS: Using an instron servohydraulic loading machine, we tested pedicle screws inserted in both the anatomic (angled) and Roy-Camille (straight) insertion technique with both larger diameter (8 mm) pedicle screws, as well as standard diameter (6 mm) pedicle screws augmented with polymethylmethacrylate bone cement. Each of these techniques was subjected to constant load under cyclic conditions for 2000 cycles at 2 Hz. Computerized data collection was used at all time points. Comparisons were made between primary instrumentation data (previously published) and large diameter screws for revision. Further comparisons were made between large diameter screws and cement augmented screws. RESULTS: The larger diameter screws compared with the cement augmented screws showed significant differences in: initial stiffness with straight insertion technique (P < 0.01), stiffness damage with straight insertion technique (P < 0.01), and creep damage with straight insertion technique (P = 0.01). There was also a significant difference between large diameter and primary instrumentation technique all calculated values (P

Subject(s)
Bone Cements/therapeutic use , Bone Screws , Lumbar Vertebrae/surgery , Polymethyl Methacrylate/therapeutic use , Spinal Fusion/methods , Aged , Biomechanical Phenomena , Female , Humans , Male , Materials Testing , Prosthesis Design , Prosthesis Failure , Reoperation , Spinal Fusion/instrumentation , Stress, Mechanical
2.
Clin Biomech (Bristol, Avon) ; 22(4): 385-91, 2007 May.
Article in English | MEDLINE | ID: mdl-17208340

ABSTRACT

BACKGROUND: Pedicle screw fixation to stabilize lumbar spinal fusion has become the gold standard for posterior stabilization. A significant percentage of surgical candidates are classified as obese or morbidly obese. For these patients, the depth of the incisions and soft tissue makes it extremely difficult to insert pedicle screws along the pedicle axis. As such, the pedicle screws can only be inserted in a much more sagittal axis. However, biomechanical stability of the angled screw insertion has been controversial. We hypothesized that the straight or parallel screw was a more stable construct compared to the angled or axially inserted screw when subjected to caudal cyclic loading. METHODS: We obtained 12 fresh frozen lumbar vertebrae from L3 to L5 from five cadavers. Schantz screws (6.0 mm) were inserted into each pedicle, one angled and along the axis of the pedicle and the other parallel to the spinous process. Fluoroscopic imaging was used to guide insertion. Each screw was then subjected to caudal cyclic loads of 50 N for 2000 cycles at 2 Hz. Analysis of initial damage, initial rate of damage, and total damage during cyclic loading was undertaken. FINDINGS: Average total fatigue damage for straight screws measured 0.398+/-0.38 mm, and 0.689+/-0.96 mm for angled screws. Statistical analysis for total fatigue damage ratio of angled to straight screws revealed that a significant stability was achieved in straight-screw construct (P<0.03). INTERPRETATION: This study showed that straight screw insertion results in a more stable pedicle-screw construct. The angled screw insertion technique resulted in more scattered values of damage indicating that the outcome from the angled screw fixation is less predictable. This validates the use of this technique to implant pedicle screws across the axis of the pedicle (parallel to the mid sagittal line) rather than along the axis, and has broad implications in instrumented posterior lumbar spinal surgery.


Subject(s)
Biomechanical Phenomena , Bone Screws , Lumbar Vertebrae/surgery , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...