Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Data Brief ; 51: 109651, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37869616

ABSTRACT

The dataset features radon-222 (222Rn), a radioactive tracer naturally present and frequently employed to assess submarine groundwater discharge (SGD). This collection is part of a study aimed at refining SGD estimations in shallow estuaries through the prediction of 222Rn variations using accessible hydroclimatic parameters [1]. The dataset includes measurements of 222Rn in water gathered recurringly from Aug. 2019 to June 2021 at half-hour intervals, at a monitoring station near the shore in Corpus Christi Bay, TX, USA (n = 10,660). Additionally, the data set encompasses continuous, accessible hydroclimatic parameters (e.g., wind speed and direction, atmospheric pressure, water temperature, tide height, creek and river discharge rate, n = 35,088). These parameters were integrated into two machine learning models - Random forest (RF) and Deep Neural Network (DNN) - aiming to interpret the variations in 222Rn and forecast during the data gap. A generalized additive model (GAM) was utilized, focusing on interpreting the variability in 222Rn inventory, particularly influenced by windspeed and direction. The tools and data presented herein afford prospects to 1) forecast 222Rn inventories in areas with significant data voids using only publicly accessible hydroclimatic parameters, and 2) refine SGD estimations affected by wind, thereby offering valuable insights for the planning of field expeditions and the development of management strategies for coastal water and solute budgets.

2.
Conserv Physiol ; 11(1): coad048, 2023.
Article in English | MEDLINE | ID: mdl-37425482

ABSTRACT

Tissue and blood gas embolism (GE) associated with fisheries bycatch are likely a widespread, yet underestimated, cause of sea turtle mortality. Here, we evaluated risk factors associated with tissue and blood GE in loggerhead turtles caught incidentally by trawl and gillnet fisheries on the Valencian coastline of Spain. Of 413 turtles (303 caught by trawl, 110 by gillnet fisheries), 54% (n = 222) exhibited GE. For sea turtles caught in trawls, the probability and severity of GE increased with trawl depth and turtle body mass. In addition, trawl depth and the GE score together explained the probability of mortality (P[mortality]) following recompression therapy. Specifically, a turtle with a GE score of 3 caught in a trawl deployed at 110 m had a P[mortality] of ~50%. For turtles caught in gillnets, no risk variables were significantly correlated with either the P[GE] or GE score. However, gillnet depth or GE score, separately, explained P[mortality], and a turtle caught at 45 m or with a GE score between 3 and 4 had a P[mortality] of 50%. Differences in the fishery characteristics precluded direct comparison of GE risk and mortality between these gear types. Although P[mortality] is expected to be significantly higher in untreated turtles released at sea, our findings can improve estimates of sea turtle mortality associated with trawls and gillnets, and help guide associate conservation efforts.

3.
Mar Pollut Bull ; 152: 110903, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31957680

ABSTRACT

Coastal watersheds in Texas have experienced significant human population growth over the past several decades, yet there have been no comprehensive assessments of water quality trends in Texas estuaries. Here, analysis of historical estuarine water quality data indicates regional "hot spots" of change. Galveston Bay and Oso Bay, which have highly urbanized watersheds, currently exhibit symptoms of eutrophication. Symptoms of eutrophication were also found in the Baffin Bay-Upper Laguna Madre complex, which has a sparsely populated but agriculturally-intensive watershed. Increasing salinity was observed in estuaries of the central Texas coast and are attributed to long-term decreases in freshwater inflow. Another artifact of decreasing freshwater inflow is a reduction in the delivery of carbonate minerals to estuaries, which manifests as decreases in pH. With findings from this study, targeted studies can now be directed at the estuaries that are experiencing water quality degradation in order to guide future management efforts.


Subject(s)
Estuaries , Water Quality , Eutrophication , Fresh Water , Humans , Texas
4.
Front Physiol ; 10: 128, 2019.
Article in English | MEDLINE | ID: mdl-30837895

ABSTRACT

Man-made environmental change may have significant impact on apex predators, like marine mammals. Thus, it is important to assess the physiological boundaries for survival in these species, and assess how climate change may affect foraging efficiency and the limits for survival. In the current study, we investigated whether the respiratory sinus arrhythmia (RSA) could estimate tidal volume (V T) in resting bottlenose dolphins (Tursiops truncatus). For this purpose, we measured respiratory flow and electrocardiogram (ECG) in five adult bottlenose dolphins at rest while breathing voluntarily. Initially, an exponential decay function, using three parameters (baseline heart rate, the change in heart rate following a breath, and an exponential decay constant) was used to describe the temporal change in instantaneous heart rate following a breath. The three descriptors, in addition to body mass, were used to develop a Generalized Additive Model (GAM) to predict the inspired tidal volume (V Tinsp). The GAM allowed us to predict V Tinsp with an average ( ± SD) overestimate of 3 ± 2%. A jackknife sensitivity analysis, where 4 of the five dolphins were used to fit the GAM and the 5th dolphin used to make predictions resulted in an average overestimate of 2 ± 10%. Future studies should be used to assess whether similar relationships exist in active animals, allowing V T to be studied in free-ranging animals provided that heart rate can be measured.

5.
PLoS One ; 12(12): e0189871, 2017.
Article in English | MEDLINE | ID: mdl-29261795

ABSTRACT

Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.


Subject(s)
Conservation of Natural Resources , Ecosystem , Salinity , Wetlands , Animals , Bayes Theorem , Biodiversity , Biomass , Decapoda , Floods , Geography , Geologic Sediments/chemistry , Isotope Labeling , Models, Theoretical , Multivariate Analysis , Texas , Water
6.
Sci Rep ; 7(1): 2739, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572687

ABSTRACT

Incidental capture, or 'bycatch' in fishing gear is a major global threat to sea turtle populations. A recent study showed that underwater entrapment in fishing gear followed by rapid decompression may cause gas bubble formation within the blood stream (embolism) and tissues leading to organ injury, impairment, and even mortality in some bycaught individuals. We analyzed data from 128 capture events using logistic and ordinal regression to examine risk factors associated with gas embolism in sea turtles captured in trawls and gillnets. Likelihood of fatal decompression increases with increasing depth of gear deployment. A direct relationship was found between depth, risk and severity of embolism, which has not been previously demonstrated in any breath-hold diving species. For the trawl fishery in this study, an average trawl depth of 65 m was estimated to result in 50% mortality in by-caught turtles throughout the year. This finding is critical for a more accurate estimation of sea turtle mortality rates resulting from different fisheries and for devising efforts to avoid or minimize the harmful effects of capture.


Subject(s)
Conservation of Natural Resources , Embolism/physiopathology , Turtles/physiology , Animals , Embolism/etiology , Fisheries , Gases/adverse effects , Risk Factors
7.
Respir Physiol Neurobiol ; 234: 1-8, 2016 12.
Article in English | MEDLINE | ID: mdl-27562522

ABSTRACT

Theoretical models are used to predict how breath-hold diving vertebrates manage O2, CO2, and N2 while underwater. One recent gas dynamics model used available lung and tracheal compliance data from various species. As variation in respiratory compliance significantly affects alveolar compression and pulmonary shunt, the current study objective was to evaluate changes in model output when using species-specific parameters from California sea lions (Zalophus californianus). We explored the effects of lung and dead space compliance on the uptake of N2, O2, and CO2 in various tissues during a series of hypothetical dives. The updated parameters allowed for increased compliance of the lungs and an increased stiffness in the trachea. When comparing updated model output with a model using previous compliance values, there was a large decrease in N2 uptake but little change in O2 and CO2 levels. Therefore, previous models may overestimate N2 tensions and the risk of gas-related disease, such as decompression sickness (DCS), in marine mammals.


Subject(s)
Lung/physiology , Models, Biological , Nonlinear Dynamics , Pulmonary Gas Exchange/physiology , Sea Lions/physiology , Animals , Computer Simulation , Diving/physiology
8.
Mar Pollut Bull ; 104(1-2): 44-53, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26876558

ABSTRACT

Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (<8), were observed in a region of Oso Bay that receives wastewater effluent. Despite being shallow (<1 m) and subjected to strong winds on a regular basis, this region also exhibited episodic hypoxia/anoxia. The low oxygen and pH conditions are likely to impose significant stress on benthic organisms and nekton in the affected area. Signatures of eutrophied water were occasionally observed at the mouth of Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication.


Subject(s)
Estuaries , Urbanization , Water Quality/standards , Bays/chemistry , Chlorophyll/analysis , Eutrophication , Oxygen/analysis , Texas
9.
J Exp Biol ; 215(Pt 23): 4166-74, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22899532

ABSTRACT

Ontogenetic studies of vertebrate feeding performance can help address questions relevant to foraging ecology. Feeding morphology and performance can either limit access to food resources or open up new trophic niches in both aquatic and terrestrial systems. Loggerhead sea turtles are long-lived vertebrates with complex life histories that are marked by an ontogenetic shift from an oceanic habitat to a coastal neritic habitat, and a transition from soft oceanic prey to hard, benthic prey. Although considered durophagous and strong biters, bite performance has not been measured in loggerheads, nor has the ontogeny of bite performance been characterized. In the present study, we collected measurements of bite force in loggerhead turtles from hatchlings to adults. When subadults reach the body size at which the ontogenetic shift occurs, their crushing capability is great enough for them to consume numerous species of hard benthic prey of small sizes. As loggerheads mature and bite performance increases, larger and harder benthic prey become accessible. Loggerhead bite performance eventually surpasses the crushing capability of other durophagous carnivores, thereby potentially reducing competition for hard benthic prey. The increasing bite performance and accompanying changes in morphology of the head and jaws are likely an effective mechanism for resource partitioning and decreasing trophic competition. Simultaneous measurements of body and head size and the use of non-linear reduced major axis regression show that bite force increases with significant positive allometry relative to body size (straight carapace length, straight carapace width and mass) and head size (head width, height and length). Simple correlation showed that all recorded morphometrics were good predictors of measured bite performance, but an AICc-based weighted regression showed that body size (straight carapace width followed by straight carapace length and mass, respectively) were more likely predictors of bite force than head size morphometrics (head width and head length).


Subject(s)
Feeding Behavior , Head/anatomy & histology , Turtles/anatomy & histology , Turtles/physiology , Animals , Diet , Environment , Head/growth & development , Turtles/growth & development
10.
Respir Physiol Neurobiol ; 178(2): 315-22, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21763471

ABSTRACT

This study investigated the effects of preventing bulk flow from the right ventricle to the body via the left aorta (LAo; right to left shunt, R→L) on acid-base status in alligators following feeding, during long-term fasting and a cold temperature exposure. Post-feeding pHv and [Formula: see text] were not significantly different between S and C. Post-feeding pHv increased in both groups of alligators, but not significantly. During fasting, all acid-base variables were similar between the two groups of alligators. A 10 °C reduction in environmental temperature resulted in a significant difference in pHv and HCO3- between S and C. Both pHv and HCO3- were significantly higher in C animals. PV(CO2) significantly decreased in both groups during the cold exposure. Preventing the R→L shunt via the LAo had significant effects on acid-base balance in alligators indicating incomplete compensation for its loss and a role for the LAo in metabolic homeostasis.


Subject(s)
Acid-Base Equilibrium , Aorta, Thoracic/surgery , Heart Ventricles/surgery , Acid-Base Equilibrium/physiology , Alligators and Crocodiles , Animals , Aorta, Thoracic/physiology , Cold Temperature , Fasting/blood , Feeding Behavior/physiology , Heart Ventricles/metabolism , Ligation
11.
Water Res ; 44(14): 4067-76, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20566209

ABSTRACT

In this study, data from bacterial source tracking (BST) analysis using antibiotic resistance profiles were examined using two statistical techniques, Random Forests (RF) and discriminant analysis (DA) to determine sources of fecal contamination of a Texas water body. Cow Trap and Cedar Lakes are potential oyster harvesting waters located in Brazoria County, Texas, that have been listed as impaired for bacteria on the 2004 Texas 303(d) list. Unknown source Escherichia coli were isolated from water samples collected in the study area during two sampling events. Isolates were confirmed as E. coli using carbon source utilization profiles and then analyzed via ARA, following the Kirby-Bauer disk diffusion method. Zone diameters from ARA profiles were analyzed with both DA and RF. Using a two-way classification (human vs nonhuman), both DA and RF categorized over 90% of the 299 unknown source isolates as a nonhuman source. The average rates of correct classification (ARCCs) for the library of 1172 isolates using DA and RF were 74.6% and 82.3%, respectively. ARCCs from RF ranged from 7.7 to 12.0% higher than those from DA. Rates of correct classification (RCCs) for individual sources classified with RF ranged from 23.2 to 0.2% higher than those of DA, with a mean difference of 9.0%. Additional evidence for the outperformance of DA by RF was found in the comparison of training and test set ARCCs and examination of specific disputed isolates; RF produced higher ARCCs (ranging from 8 to 13% higher) than DA for all 1000 trials (excluding the two-way classification, in which RF outperformed DA 999 out of 1000 times). This is of practical significance for analysis of bacterial source tracking data. Overall, based on both DA and RF results, migratory birds were found to be the source of the largest portion of the unknown E. coli isolates. This study is the first known published application of Random Forests in the field of BST.


Subject(s)
Bacteria/isolation & purification , Drug Resistance, Microbial , Models, Statistical , Water Microbiology , Water Pollutants/analysis , Animals , Discriminant Analysis , Escherichia coli/isolation & purification , Feces/microbiology , Fresh Water/microbiology , Humans , Ostreidae/microbiology , Texas
SELECTION OF CITATIONS
SEARCH DETAIL
...