Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38727320

ABSTRACT

Cardiac arrest survivors suffer the repercussions of anoxic brain injury, a critical factor influencing long-term prognosis. This injury is characterised by profound and enduring metabolic impairment. Ketone bodies, an alternative energetic resource in physiological states such as exercise, fasting, and extended starvation, are avidly taken up and used by the brain. Both the ketogenic diet and exogenous ketone supplementation have been associated with neuroprotective effects across a spectrum of conditions. These include refractory epilepsy, neurodegenerative disorders, cognitive impairment, focal cerebral ischemia, and traumatic brain injuries. Beyond this, ketone bodies possess a plethora of attributes that appear to be particularly favourable after cardiac arrest. These encompass anti-inflammatory effects, the attenuation of oxidative stress, the improvement of mitochondrial function, a glucose-sparing effect, and the enhancement of cardiac function. The aim of this manuscript is to appraise pertinent scientific literature on the topic through a narrative review. We aim to encapsulate the existing evidence and underscore the potential therapeutic value of ketone bodies in the context of cardiac arrest to provide a rationale for their use in forthcoming translational research efforts.


Subject(s)
Heart Arrest , Ketone Bodies , Ketone Bodies/metabolism , Humans , Heart Arrest/metabolism , Animals , Diet, Ketogenic
3.
Crit Care ; 28(1): 104, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561829

ABSTRACT

Severe acute brain injuries, stemming from trauma, ischemia or hemorrhage, remain a significant global healthcare concern due to their association with high morbidity and mortality rates. Accurate assessment of secondary brain injuries severity is pivotal for tailor adequate therapies in such patients. Together with neurological examination and brain imaging, monitoring of systemic secondary brain injuries is relatively straightforward and should be implemented in all patients, according to local resources. Cerebral secondary injuries involve factors like brain compliance loss, tissue hypoxia, seizures, metabolic disturbances and neuroinflammation. In this viewpoint, we have considered the combination of specific noninvasive and invasive monitoring tools to better understand the mechanisms behind the occurrence of these events and enhance treatment customization, such as intracranial pressure monitoring, brain oxygenation assessment and metabolic monitoring. These tools enable precise intervention, contributing to improved care quality for severe brain injury patients. The future entails more sophisticated technologies, necessitating knowledge, interdisciplinary collaboration and resource allocation, with a focus on patient-centered care and rigorous validation through clinical trials.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adult , Humans , Critical Care/methods , Intracranial Pressure , Brain Injuries/therapy , Brain Injuries/complications , Brain , Monitoring, Physiologic/methods
4.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474253

ABSTRACT

The brain's unique characteristics make it exceptionally susceptible to oxidative stress, which arises from an imbalance between reactive oxygen species (ROS) production, reactive nitrogen species (RNS) production, and antioxidant defense mechanisms. This review explores the factors contributing to the brain's vascular tone's vulnerability in the presence of oxidative damage, which can be of clinical interest in critically ill patients or those presenting acute brain injuries. The brain's high metabolic rate and inefficient electron transport chain in mitochondria lead to significant ROS generation. Moreover, non-replicating neuronal cells and low repair capacity increase susceptibility to oxidative insult. ROS can influence cerebral vascular tone and permeability, potentially impacting cerebral autoregulation. Different ROS species, including superoxide and hydrogen peroxide, exhibit vasodilatory or vasoconstrictive effects on cerebral blood vessels. RNS, particularly NO and peroxynitrite, also exert vasoactive effects. This review further investigates the neuroprotective effects of antioxidants, including superoxide dismutase (SOD), vitamin C, vitamin E, and the glutathione redox system. Various studies suggest that these antioxidants could be used as adjunct therapies to protect the cerebral vascular tone under conditions of high oxidative stress. Nevertheless, more extensive research is required to comprehensively grasp the relationship between oxidative stress and cerebrovascular tone, and explore the potential benefits of antioxidants as adjunctive therapies in critical illnesses and acute brain injuries.


Subject(s)
Brain Injuries , Oxygen , Humans , Reactive Oxygen Species/metabolism , Oxygen/pharmacology , Nitrogen/pharmacology , Oxidative Stress , Antioxidants/pharmacology , Reactive Nitrogen Species/metabolism , Niacinamide/pharmacology , Brain Injuries/drug therapy
5.
Brain Sci ; 14(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38391692

ABSTRACT

Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.

6.
Ann Med Surg (Lond) ; 86(1): 539-544, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222739

ABSTRACT

Introduction: Acute liver failure (ALF) is a rapidly progressing, life-threatening syndrome characterized by liver-related coagulopathy and hepatic encephalopathy (HE). Given that higher HE grades correlate with poorer outcomes, clinical management of ALF necessitates close neurological monitoring. The primary objective of this case report is to highlight the diagnostic value of utilizing multimodal neuromonitoring (MNM) in a patient suffering from ALF. Case report: A 56-year-old male patient with a history of chronic alcoholism, without prior chronic liver disease, and recent acetaminophen use was admitted to the hospital due to fatigue and presenting with a mild flapping tremor. The primary hypothesis was an acute hepatic injury caused by acetaminophen intoxication. In the following hours, the patient's condition deteriorated, accompanied by neurological decline and rising ammonia levels. The patient's neurological status was closely monitored using MNM. Bilaterally altered pupillary light reflex assessed by decreasing in the Neurological Pupil Index values, using automated pupillometry, initially suggested severe brain oedema. However, ultrasound measurements of the optic nerve sheath diameter showed normal values in both eyes, P2/P1 noninvasive intracranial pressure waveform assessment was within normal ranges and the cerebral computed tomography-scan revealed no signs of cerebral swelling. Increased middle cerebral artery velocities measured by Transcranial Doppler and the initiation of electroencephalography monitoring yielded the presence of status epilepticus. Discussion: The utilization of MNM facilitated a more comprehensive understanding of the mechanisms underlying the patient's clinical deterioration in the setting of HE. Nonetheless, future studies are needed to show feasibility and to yield valuable insights that can enhance the outcomes for patients with HE using such an approach. Given the absence of specific guidelines in this particular context, it is advisable for physicians to give further consideration to the incorporation of MNM in the management of unconscious patients with ALF.

8.
J Clin Med ; 10(20)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34682881

ABSTRACT

The most used types of mechanical ventilation are volume- and pressure-controlled ventilation, respectively characterized by a square and a decelerating flow waveform. Nowadays, the clinical utility of different inspiratory flow waveforms remains unclear. The aim of this study was to assess the effects of four different inspiratory flow waveforms in ARDS patients. Twenty-eight ARDS patients (PaO2/FiO2 182 ± 40 and PEEP 11.3 ± 2.5 cmH2O) were ventilated in volume-controlled ventilation with four inspiratory flow waveforms: square (SQ), decelerating (DE), sinusoidal (SIN), and trunk descending (TDE). After 30 min in each condition, partitioned respiratory mechanics and gas exchange were collected. The inspiratory peak flow was higher in the DE waveform compared to the other three waveforms, and in SIN compared to the SQ and TDE waveforms, respectively. The mean inspiratory flow was higher in the DE and SIN waveforms compared with TDE and SQ. The inspiratory peak pressure was higher in the SIN and SQ compared to the TDE waveform. Partitioned elastance was similar in the four groups; mechanical power was lower in the TDE waveform, while PaCO2 in DE. No major effect on oxygenation was found. The explored flow waveforms did not provide relevant changes in oxygenation and respiratory mechanics.

SELECTION OF CITATIONS
SEARCH DETAIL
...