Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 98(5): 928-941, 2019 06.
Article in English | MEDLINE | ID: mdl-30735592

ABSTRACT

Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand-binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC-MS to identify candidate binding ligands. We optimized this method using ABA-PYL interactions and show that ABA co-purifies with wild-type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 µm, which suggests that the method has sufficient sensitivity for many ligand-protein interactions. Using this method, we surveyed a set of 37 START domain-related proteins, which resulted in the identification of ligands that co-purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co-purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein-metabolite interaction and better understand protein-ligand interactions in plants.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Fatty Acid-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Fatty Acid-Binding Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Ligands , Linolenic Acids/chemistry , Linolenic Acids/metabolism , Plant Growth Regulators/metabolism , Plants, Genetically Modified , Protein Binding , Signal Transduction
2.
J Clin Microbiol ; 50(10): 3180-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22814467

ABSTRACT

In June 2010, a bla(KPC)-negative, ertapenem-resistant ST-258 Klebsiella pneumoniae strain was isolated from a patient in the Laniado Medical Center (LMC). Our aims were (i) to describe its molecular characteristics and resistance mechanisms and (ii) to assess whether the bla(KPC)-negative ST-258 K. pneumoniae clone spreads as efficiently as its KPC-producing isogenic strain. In a prospective study, surveillance of all ertapenem-resistant, carbapenemase-negative K. pneumoniae (ERCNKP) isolates was conducted from June 2010 to May 2011 at LMC (314 beds) and from July 2008 to December 2010 at the Tel Aviv Sourasky Medical Center (TASMC) (1,200 beds). Molecular typing was done by arbitrarily primed PCR, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). A total of 8 of 42 (19%) ERCNKP isolates in LMC and 1 of 32 (3.1%) in TASMC belonged to the ST-258 clone. These strains carried the bla(CTX-M-2) or the bla(CTX-M-25) extended-spectrum ß-lactamase (ESBL) gene. Sequencing of the ompK genes showed a frameshift mutation in the ompK35 gene. The fate of the bla(KPC)-carrying plasmid, pKpQIL, was determined by S1 analysis and by PCR of the Tn4401 transposon, repA, and the truncated bla(OXA-9). Plasmid analysis of the ERCNKP ST-258 isolates showed variability in plasmid composition and absence of the Tn4401 transposon and the pKpQIL plasmid. In addition, the ST-258 clone was identified in 35/35 (100%) of KPC-producing K. pneumoniae isolates but in none of 62 ertapenem-susceptible K. pneumoniae isolates collected in the two centers. Our results suggest that ERCNKP ST-258 evolved by loss of the bla(KPC)-carrying plasmid pKpQIL. ERCNKP ST-258 appears to have low epidemic potential.


Subject(s)
Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Molecular Typing , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Electrophoresis, Gel, Pulsed-Field , Ertapenem , Genotype , Humans , Israel/epidemiology , Klebsiella pneumoniae/isolation & purification , Molecular Epidemiology , Multilocus Sequence Typing , Plasmids/analysis , Polymerase Chain Reaction , Prospective Studies , beta-Lactam Resistance , beta-Lactams/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...