Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Mar Environ Res ; 196: 106442, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484651

ABSTRACT

Grazing by nominally herbivorous fishes is widely recognised as a critical ecosystem function on coral reefs. However, several studies have suggested that herbivory is reduced in the presence of predators, especially sharks. Nevertheless, the effects of shark presence on grazing, under natural settings, remains poorly resolved. Using ∼200 h of video footage, we quantify the extent of direct disturbance by reef sharks on grazing fishes. Contrary to expectations, grazing rate was not significantly suppressed due to sharks, with fishes resuming feeding in as little as 4 s after sharks passed. Based on our observations, we estimate that an average m2 area of reef at our study locations would be subjected to ∼5 s of acute shark disturbance during daylight hours. It appears the short-term impact of reef shark presence has a negligible effect on herbivore grazing rates, with the variable nature of grazing under natural conditions overwhelming any fear effects.


Subject(s)
Ecosystem , Sharks , Animals , Herbivory , Coral Reefs , Fishes , Fear
2.
Ecol Lett ; 27(1): e14332, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37850584

ABSTRACT

Ecosystem recovery from human-induced disturbances, whether through natural processes or restoration, is occurring worldwide. Yet, recovery dynamics, and their implications for broader ecosystem management, remain unclear. We explored recovery dynamics using coral reefs as a case study. We tracked the fate of 809 individual coral recruits that settled after a severe bleaching event at Lizard Island, Great Barrier Reef. Recruited Acropora corals, first detected in 2020, grew to coral cover levels that were equivalent to global average coral cover within just 2 years. Furthermore, we found that just 11.5 Acropora recruits per square meter were sufficient to reach this cover within 2 years. However, wave exposure, growth form and colony density had a marked effect on recovery rates. Our results underscore the importance of considering natural recovery in management and restoration and highlight how lessons learnt from reef recovery can inform our understanding of recovery dynamics in high-diversity climate-disturbed ecosystems.


Subject(s)
Anthozoa , Animals , Humans , Ecosystem , Coral Reefs , Climate
3.
Mar Environ Res ; 193: 106276, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38016301

ABSTRACT

Coral bleaching events have become more frequent and severe due to ocean warming. While the large-scale impacts of bleaching events are well-known, there is growing recognition of the importance of small-scale spatial variation in bleaching and survival probability of individual coral colonies. By quantifying bleaching in 108 massive Porites colonies spread across Lizard Island, Great Barrier Reef, during the 2016 bleaching event, we investigated how hydrodynamic exposure levels and colony size contribute to local variability in bleaching prevalence and extent. Our results revealed that exposed locations were the least impacted by bleaching, while lagoonal areas exhibited the highest prevalence of bleaching and colony-level bleaching extents. Such patterns of bleaching could be due to prolonged exposure to warm water in the lagoon. These findings highlight the importance of considering location-specific factors when assessing coral health and emphasize the vulnerability of corals in lagoonal habitats to rapid and/or prolonged elevated temperatures.


Subject(s)
Anthozoa , Animals , Coral Reefs , Ecosystem
4.
Mar Environ Res ; 191: 106169, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703670

ABSTRACT

Productivity of oligotrophic coral reefs is largely dependent on the constant influx of zooplankton. However, our understanding of how zooplankton communities in tropical reef-associated regions vary over large spatial and temporal scales is limited. Using the Australian continuous plankton recorder dataset, we explored if, and to what extent, the off-reef zooplankton community along the Queensland shelf (including most of the Great Barrier Reef lagoon) varied with latitude, month, and diel time. The zooplankton community was consistently dominated by copepods (∼60%) which, with appendicularians, chaetognaths, non-copepod crustaceans, and thaliaceans, comprised ∼98% of the zooplankton. However, the abundance of these taxonomic groups did not vary predictably across latitude, month, or diel time, with these gradients only explaining 5% of community variation. At the scales sampled herein the composition of zooplankton was highly predictable in terms of broad taxonomic groups but variation in the relative abundance of these groups was not predictable.


Subject(s)
Anthozoa , Copepoda , Animals , Zooplankton , Australia , Coral Reefs , Queensland
6.
Sci Total Environ ; 895: 165188, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37385494

ABSTRACT

Sediments are found on all coral reefs around the globe. However, the amount of sediment in different reservoirs, and the rates at which sediments move between reservoirs, can shape the biological functioning of coral reefs. Unfortunately, relatively few studies have examined reef sediment dynamics, and associated bio-physical drivers, simultaneously over matching spatial and temporal scales. This has led to a partial understanding of how sediments and living reef systems are connected, especially on clear-water offshore reefs. To address this problem, four sediment reservoirs/sedimentary processes and three bio-physical drivers were quantified across seven different reef habitats/depths at Lizard Island, an exposed mid-shelf reef on the Great Barrier Reef. Even in this clear-water reef location a substantial load of suspended sediment passed over the reef; a load theoretically capable of replacing the entire standing stock of on-reef turf sediments in just 8 h. However, quantification of actual sediment deposition suggested that just 2 % of this passing sediment settled on the reef. The data also revealed marked spatial incongruence in sediment deposition (sediment trap data) and accumulation (TurfPod data) across the reef profile, with the flat and back reef emerging as key areas of both deposition and accumulation. By contrast, the shallow windward reef crest was an area of deposition but had a limited capacity for sediment accumulation. These cross-reef patterns related to wave energy and reef geomorphology, with low sediment accumulation on the ecologically important reef crest aligning with substantial wave energy. These findings reveal a disconnect between patterns of sediment deposition and accumulation on the benthos, with the 'post-settlement' fate of sediments dependent on local hydrodynamic conditions. From an ecological perspective, the data suggests key contextual constraints (wave energy and reef geomorphology) may predispose some reefs or reef areas to high-load turf sediment regimes.


Subject(s)
Anthozoa , Coral Reefs , Animals , Geologic Sediments , Ecosystem
7.
Bioscience ; 73(3): 220-228, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36936383

ABSTRACT

The concept of dominance is frequently used to describe changes in rapidly reconfiguring ecosystems, but the definition of dominance can vary widely among studies. Using coral reefs as a model, we use extensive benthic composition data to explore how variability in applying dominance concepts can shape perceptions. We reveal that coral dominance is sensitive to the exclusion of key algal groups and the categorization of other benthic groups, with ramifications for detecting an ecosystem phase shift. For example, ignoring algal turf inflates the dominance of hard and soft corals in the benthic habitats underpinning reef ecosystems. We need a consensus on how dominance concepts are applied so that we can build a more comprehensive understanding of ecosystem shifts across a broad range of aquatic and terrestrial settings. For reefs, we highlight the benefits of comprehensive and inclusive surveys for evaluating and managing the altered ecosystem states that are emerging in the Anthropocene.

8.
Nat Ecol Evol ; 7(1): 71-81, 2023 01.
Article in English | MEDLINE | ID: mdl-36631667

ABSTRACT

Globally, ecosystems are being reconfigured by a range of intensifying human-induced stressors. Coral reefs are at the forefront of this environmental transformation, and if we are to secure their key ecosystem functions and services, it is important to understand the likely configuration of future reefs. However, the composition and trajectory of global coral reef benthic communities is currently unclear. Here our global dataset of 24,468 observations spanning 22 years (1997-2018) revealed that particularly marked declines in coral cover occurred in the Western Atlantic and Central Pacific. The data also suggest that high macroalgal cover, widely regarded as the major degraded state on coral reefs, is a phenomenon largely restricted to the Western Atlantic. At a global scale, the raw data suggest decreased average (± standard error of the mean) hard coral cover from 36 ± 1.4% to 19 ± 0.4% (during a period delineated by the first global coral bleaching event (1998) until the end of the most recent event (2017)) was largely associated with increased low-lying algal cover such as algal turfs and crustose coralline algae. Enhanced understanding of reef change, typified by decreased hard coral cover and increased cover of low-lying algal communities, will be key to managing Anthropocene coral reefs.


Subject(s)
Anthozoa , Coral Reefs , Animals , Humans , Ecosystem
9.
Ann Clin Transl Neurol ; 10(2): 276-291, 2023 02.
Article in English | MEDLINE | ID: mdl-36579400

ABSTRACT

OBJECTIVE: Despite successful endovascular therapy, a proportion of stroke patients exhibit long-term functional decline, regardless of the cortical reperfusion. Our objective was to evaluate the early activation of the adaptive immune response and its impact on neurological recovery in patients with large vessel occlusion (LVO). METHODS: Nineteen (13 females, 6 males) patients with acute LVO were enrolled in a single-arm prospective cohort study. During endovascular therapy (EVT), blood samples were collected from pre and post-occlusion, distal femoral artery, and median cubital vein (controls). Cytokines, chemokines, cellular and functional profiles were evaluated with immediate and follow-up clinical and radiographic parameters, including cognitive performance and functional recovery. RESULTS: In the hyperacute phase (within hours), adaptive immune activation was observed in the post-occlusion intra-arterial environment (post). Ischemic vascular tissue had a significant increase in T-cell-related cytokines, including IFN-γ and MMP-9, while GM-CSF, IL-17, TNF-α, IL-6, MIP-1a, and MIP-1b were decreased. Cellularity analysis revealed an increase in inflammatory IL-17+ and GM-CSF+ helper T-cells, while natural killer (NK), monocytes and B-cells were decreased. A correlation was observed between hypoperfused tissue, infarct volume, inflammatory helper, and cytotoxic T-cells. Moreover, helper and cytotoxic T-cells were also significantly increased in patients with improved motor function at 3 months. INTERPRETATION: We provide evidence of the activation of the inflammatory adaptive immune response during the hyperacute phase and the association of pro-inflammatory cytokines with greater ischemic tissue and worsening recovery after successful reperfusion. Further characterization of these immune pathways is warranted to test selective immunomodulators during the early stages of stroke rehabilitation.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Motor Skills Disorders , Female , Humans , Male , Cytokines , Granulocyte-Macrophage Colony-Stimulating Factor , Immunity , Interleukin-17 , Prospective Studies , Stroke/complications , Stroke/immunology , Stroke/therapy , Brain Ischemia/complications , Brain Ischemia/immunology , Brain Ischemia/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/immunology , Motor Skills Disorders/etiology , Motor Skills Disorders/immunology , Neuroinflammatory Diseases/immunology
10.
Mar Environ Res ; 181: 105763, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36206642

ABSTRACT

Sediments are ubiquitous on coral reefs. However, studies of reef sediments have largely focused on isolated reservoirs, or processes, and rarely consider hydrodynamic drivers. We therefore provide a quantitative snapshot of sediment dynamics on a coral reef. Across a depth profile, we simultaneously examined: suspended sediments, sediment deposition and accumulation, and hydrodynamic and biological movement processes. We reveal the marked potential for the water column to deliver sediments. Currents carried 12.6 t of sediment over the 2,314 m2 study area in 6 days. Sediment traps suggested that a surprisingly high percentage of this sediment was potentially deposited (5.2%). Furthermore, wave-driven resuspension and reworking by parrotfishes separated a highly dynamic sediment regime on the shallow reef flat (3 m), from a more stagnant reef slope (4.5 m-12 m). This study provides a comprehensive model of how hydrodynamic forces and on-reef processes may shape sediment dynamics on a coral reef.


Subject(s)
Anthozoa , Perciformes , Animals , Coral Reefs , Geologic Sediments
11.
Mar Pollut Bull ; 184: 114113, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36099683

ABSTRACT

Algal turfs form a critical interface on coral reefs that interacts with several key ecosystem processes. While we know these turfs have a remarkable propensity to accumulate sediments, which can have a range of ecosystem impacts, their role as sinks for heavy metals remains largely unexamined. Here we quantified the concentration of 15 metals in algal turf sediments from Lizard Island and Orpheus Island on the Great Barrier Reef, and specifically explored how the loads of arsenic, cobalt, iron and lead were related to turf length. Metal composition differed markedly between the two islands, with the composition at Orpheus Island suggesting closer links to terrestrial sediment sources. Furthermore, metal loads increased significantly with turf length, suggesting that longer turfs can accumulate these pollutants on reefs. Given that algal turfs are a crucial component of herbivorous/detritivorous trophic pathways, this could represent a key juncture at which these metals enter food chains.


Subject(s)
Anthozoa , Arsenic , Environmental Pollutants , Metals, Heavy , Animals , Coral Reefs , Ecosystem , Geologic Sediments , Iron , Cobalt
12.
Mar Environ Res ; 181: 105752, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115331

ABSTRACT

Cyanobacterial mats are increasingly recognised as a symptom of coral reef change. However, the spatial distribution of cyanobacterial mats during coral bleaching has received limited attention. We explored cyanobacterial mat distribution during a bleaching event at Lizard Island and considered hydrodynamics as a potential modifier. During bleaching cyanobacterial mats covered up to 34% of the benthos at a transect scale, while some quadrats (1 m2) were covered almost entirely (97.5%). The spatial distribution of cyanobacterial mats was limited to areas with slower water currents. Coral cover declined by 44% overall, although cyanobacterial mats were not spatially coupled to the magnitude of coral loss. Overall, the marked increase in cyanobacterial mat cover was an ephemeral spike, not a sustained change, with cover returning to 0.4% within 6 months. Cyanobacterial mats clearly represent dynamic space holders on coral reefs, with a marked capacity to rapidly exploit change, if conditions are right.


Subject(s)
Anthozoa , Cyanobacteria , Animals , Coral Bleaching , Water , Coral Reefs
13.
Mar Pollut Bull ; 181: 113903, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35843165

ABSTRACT

Algal turfs trap and retain particulates, however, little is known about the relationship between particulate accumulation and taxonomic composition of algal turfs. We investigated how particulate mass related to algal turf structure (length and density) and community composition (taxonomic and functional) on two disparate reefs. Particulate mass was positively related to algal turf length. By contrast, the relationship between particulate mass and turf density was more complex and followed a negative parabolic shape; density increased with particulate mass before stabilising and then declining. Community analyses showed taxonomic, but not functional group compositions differed significantly between reefs and with increasing particulate mass. Our results suggest high loads of particulates accumulated in algal turfs are related to a longer, lower density turf structure, typified by filamentous forms such as Cladophora. Changes in algal turf structure and composition could have a variety of bottom-up influences on coral reef ecosystems.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Geologic Sediments/chemistry
14.
Mar Environ Res ; 179: 105673, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35688019

ABSTRACT

Algal turfs are the most abundant benthic covering on reefs in many shallow-water marine ecosystems. The particulates and sediments bound within algal turfs can influence a multitude of functions within these ecosystems. Despite the global abundance and importance of algal turfs, comparison of algal turf-bound sediments is problematic due to a lack of standardisation across collection methods. Here we provide an overview of three methods (vacuum sampling, airlift sampling, and TurfPods), and the necessary equipment (including construction suggestions), commonly employed to quantify sediments from algal turfs. We review the purposes of these methods (e.g. quantification of standing stock versus net accumulation) and how methods can vary depending on the research question or monitoring protocol. By providing these details in a readily accessible format we hope to encourage a standardised set of approaches for marine benthic ecologists, geologists and managers, that facilitates further quantification and global comparisons of algal turf sediments.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Geologic Sediments
15.
Mar Pollut Bull ; 180: 113799, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35665616

ABSTRACT

Sediments in algal turfs can modify a wide variety of key ecological processes on coral reefs. While some larger reef fishes can remove these turf-bound sediments, the role of small, yet abundant, cryptobenthic fishes is currently unclear. To address this knowledge gap, we explored the extent to which the blenny, Ecsenius stictus, can shape sediment dynamics on coral reefs by quantifying their sediment ingestion and space use. Per unit body mass, E. stictus process sediments at comparable rates to key parrotfish and surgeonfish species. However, in absolute terms, E. stictus has a negligible influence on net sediment dynamics, despite their abundance. Behavioural observations and 3D photogrammetry reveal that E. stictus preferentially feed and rest on elevated surfaces; potentially because of low sediment loads on these surfaces. Overall, E. stictus may be responding to sediment loads rather than manipulating them; it is a passenger rather than a driver in reef processes.


Subject(s)
Anthozoa , Perciformes , Animals , Coral Reefs , Fishes , Geologic Sediments , Seafood
16.
Mar Environ Res ; 178: 105667, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35653967

ABSTRACT

Coral reef decline has accelerated in the last two decades resulting in substantial research into the phenomenon of 'phase shifts' or 'regime shifts'. However, the conclusions drawn from this research have been varied. Some of this variability may stem from methodological approaches, although the extent to which these factors have shaped our understanding remain largely unexplored. To examine this, we conducted a systematic review of the literature. In doing so, we revealed marked variability in the approaches used for studying phase shifts. Notably, very few studies clearly defined what they meant by phase shifts. Therefore, we developed a clarified definition of phase shifts, which specifically defined persistence and dominance. The applicability of this definition was tested on multi-decadal benthic composition data on the Great Barrier Reef. The number of shifts depended critically on the definition selected, suggesting that this may be a primary reason underpinning the variability in past results.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem
17.
Mar Environ Res ; 173: 105537, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34837738

ABSTRACT

The world's coral reef ecosystems are steadily being reconfigured by climate change. Lizard Island, on Australia's Great Barrier Reef, offers an opportunity to examine coral reef reassembly following disturbance, as this location has been impacted by consecutive tropical cyclones and consecutive coral bleaching events. Based on repeatedly monitoring the same 349 photoquadrats around Lizard Island over a 5-year period (2016-2021) we revealed that bleaching in 2016 drove a ∼50% reduction in hard coral cover, and a concomitant increase in algal turf cover. From 2018 to 2021, significant increases (>600%) in coral cover were detected on two semi-exposed reefs and were associated with substantial Acropora recruitment. By contrast, fourteen lagoonal and back reefs exhibited virtually no recovery nor Acropora recruitment. Given that the timeframe between disturbances is set to decrease, our results suggest that some recovery is possible immediately after severe cumulative disturbances, although this recovery may be highly spatially heterogenous.


Subject(s)
Anthozoa , Lizards , Animals , Coral Bleaching , Coral Reefs , Ecosystem
19.
Sci Rep ; 11(1): 18787, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552159

ABSTRACT

Thermal-stress events have changed the structure, biodiversity, and functioning of coral reefs. But how these disturbances affect the dynamics of individual coral colonies remains unclear. By tracking the fate of 1069 individual Acropora and massive Porites coral colonies for up to 5 years, spanning three bleaching events, we reveal striking genus-level differences in their demographic response to bleaching (mortality, growth, and recruitment). Although Acropora colonies were locally extirpated, substantial local recruitment and fast growth revealed a marked capacity for apparent recovery. By contrast, almost all massive Porites colonies survived and the majority grew in area; yet no new colonies were detected over the 5 years. Our results highlight contrasting dynamics of boom-and-bust vs. protracted declines in two major coral groups. These dangerous demographics emphasise the need for caution when documenting the susceptibility and perceived resistance or recovery of corals to disturbances.


Subject(s)
Anthozoa , Coral Bleaching , Animals , Anthozoa/metabolism , Climate Change , Coral Reefs , Time Factors
20.
Mar Pollut Bull ; 169: 112580, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34102417

ABSTRACT

There is a rich literature on coral reef sediments. However, this knowledge is spread among research fields, and the extent to which major sediment reservoirs and reservoir connecting processes have been quantified is unclear. We examined the literature to quantify where and how sediments have been measured on coral reefs and, thereby, identified critical knowledge gaps. In most studies, sediments in one reservoir or one sedimentary process were quantified. The measurement of water column sediments (55% of reservoir measurements) and sediment trapping rates (42% of process measurements) were over-represented. In contrast, sediments on reef substrata, and the transition of sediments from the water column to the benthos, were rarely quantified. Furthermore, only ~20% of sediment measurements were accompanied by the quantification of hydrodynamic drivers. Multidisciplinary collaborative approaches offer great promise for advancing our understanding of the connections between sediment reservoirs, and the sedimentary and hydrodynamic processes that mediate these connections.


Subject(s)
Anthozoa , Coral Reefs , Animals , Geologic Sediments , Hydrodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...