Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 550
Filter
1.
Brain Commun ; 6(5): fcae276, 2024.
Article in English | MEDLINE | ID: mdl-39229494

ABSTRACT

Reduced brain volumes and more prominent white matter hyperintensities on MRI scans are commonly observed among older adults without cognitive impairment. However, it remains unclear whether rates of change in these measures among cognitively normal adults differ as a function of genetic risk for late-onset Alzheimer's disease, including APOE-ɛ4, APOE-ɛ2 and Alzheimer's disease polygenic risk scores (AD-PRS), and whether these relationships are influenced by other variables. This longitudinal study examined the trajectories of regional brain volumes and white matter hyperintensities in relationship to APOE genotypes (N = 1541) and AD-PRS (N = 1093) in a harmonized dataset of middle-aged and older individuals with normal cognition at baseline (mean baseline age = 66 years, SD = 9.6) and an average of 5.3 years of MRI follow-up (max = 24 years). Atrophy on volumetric MRI scans was quantified in three ways: (i) a composite score of regions vulnerable to Alzheimer's disease (SPARE-AD); (ii) hippocampal volume; and (iii) a composite score of regions indexing advanced non-Alzheimer's disease-related brain aging (SPARE-BA). Global white matter hyperintensity volumes were derived from fluid attenuated inversion recovery (FLAIR) MRI. Using linear mixed effects models, there was an APOE-ɛ4 gene-dose effect on atrophy in the SPARE-AD composite and hippocampus, with greatest atrophy among ɛ4/ɛ4 carriers, followed by ɛ4 heterozygouts, and lowest among ɛ3 homozygouts and ɛ2/ɛ2 and ɛ2/ɛ3 carriers, who did not differ from one another. The negative associations of APOE-ɛ4 with atrophy were reduced among those with higher education (P < 0.04) and younger baseline ages (P < 0.03). Higher AD-PRS were also associated with greater atrophy in SPARE-AD (P = 0.035) and the hippocampus (P = 0.014), independent of APOE-ɛ4 status. APOE-ɛ2 status (ɛ2/ɛ2 and ɛ2/ɛ3 combined) was not related to baseline levels or atrophy in SPARE-AD, SPARE-BA or the hippocampus, but was related to greater increases in white matter hyperintensities (P = 0.014). Additionally, there was an APOE-ɛ4 × AD-PRS interaction in relation to white matter hyperintensities (P = 0.038), with greater increases in white matter hyperintensities among APOE-ɛ4 carriers with higher AD-PRS. APOE and AD-PRS associations with MRI measures did not differ by sex. These results suggest that APOE-ɛ4 and AD-PRS independently and additively influence longitudinal declines in brain volumes sensitive to Alzheimer's disease and synergistically increase white matter hyperintensity accumulation among cognitively normal individuals. Conversely, APOE-ɛ2 primarily influences white matter hyperintensity accumulation, not brain atrophy. Results are consistent with the view that genetic factors for Alzheimer's disease influence atrophy in a regionally specific manner, likely reflecting preclinical neurodegeneration, and that Alzheimer's disease risk genes contribute to white matter hyperintensity formation.

2.
medRxiv ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39228697

ABSTRACT

Cognitive resilience describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals. We demonstrate that this approach makes specific, uncontrollable assumptions and likely leads to biased and erroneous resilience estimates. We propose an alternative strategy which overcomes the standard approach's limitations using machine learning principles. Our proposed approach makes fewer assumptions about the data and construct to be measured and achieves better estimation accuracy on simulated ground-truth data.

3.
Alzheimers Dement ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129396

ABSTRACT

INTRODUCTION: Information on the psychosocial impact of Alzheimer's disease (AD) biomarker testing in adults at risk of AD is needed to inform best practices for communicating biomarker results. METHODS: Ninety-nine cognitively unimpaired older adults learned amyloid positron emission tomography (PET) results (mean age = 72.0 ± 4.8, 95% White, 28% elevated amyloid). Linear mixed-effects regression models were used to test the main effects and interaction of PET result × time on psychosocial outcomes up to 6 months after learning results. RESULTS: A significant interaction of PET result × time was observed for concern about AD (ß = 0.28, p = 0.02) and intrusive thoughts and avoidance (ß = -0.82, p < 0.001). A main effect of PET result was observed for AD test-related distress (ß = 12.09, p < 0.001). DISCUSSION: Cognitively unimpaired adults learning elevated-amyloid PET results reported mildly intrusive thoughts/avoidance initially following disclosure, but these symptoms decreased over time. Concern about AD dementia and AD biomarker test-related distress remained higher in elevated-amyloid compared to non-elevated-amyloid participants. HIGHLIGHTS: Longitudinal assessment of psychosocial reactions after amyloid PET disclosure was conducted. Transient highly intrusive thoughts or avoidance after learning elevated amyloid results. Persistent test result-related distress after receiving elevated-amyloid results. There is increased concern about AD dementia after receiving elevated-amyloid results. Happiness and relief are experienced after receiving non-elevated-amyloid results.

4.
Nat Med ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147830

ABSTRACT

Brain aging process is influenced by various lifestyle, environmental and genetic factors, as well as by age-related and often coexisting pathologies. Magnetic resonance imaging and artificial intelligence methods have been instrumental in understanding neuroanatomical changes that occur during aging. Large, diverse population studies enable identifying comprehensive and representative brain change patterns resulting from distinct but overlapping pathological and biological factors, revealing intersections and heterogeneity in affected brain regions and clinical phenotypes. Herein, we leverage a state-of-the-art deep-representation learning method, Surreal-GAN, and present methodological advances and extensive experimental results elucidating brain aging heterogeneity in a cohort of 49,482 individuals from 11 studies. Five dominant patterns of brain atrophy were identified and quantified for each individual by respective measures, R-indices. Their associations with biomedical, lifestyle and genetic factors provide insights into the etiology of observed variances, suggesting their potential as brain endophenotypes for genetic and lifestyle risks. Furthermore, baseline R-indices predict disease progression and mortality, capturing early changes as supplementary prognostic markers. These R-indices establish a dimensional approach to measuring aging trajectories and related brain changes. They hold promise for precise diagnostics, especially at preclinical stages, facilitating personalized patient management and targeted clinical trial recruitment based on specific brain endophenotypic expression and prognosis.

5.
Fluids Barriers CNS ; 21(1): 68, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215377

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) dynamics are increasingly studied in aging and neurological disorders. Models of CSF-mediated waste clearance suggest that altered CSF dynamics could play a role in the accumulation of toxic waste in the CNS, with implications for Alzheimer's disease and other proteinopathies. Therefore, approaches that enable quantitative and volumetric assessment of CSF flow velocities could be of value. In this study we demonstrate the feasibility of 4D flow MRI for simultaneous assessment of CSF dynamics throughout the ventricular system, and evaluate associations to arterial pulsatility, ventricular volumes, and age. METHODS: In a cognitively unimpaired cohort (N = 43; age 41-83 years), cardiac-resolved 4D flow MRI CSF velocities were obtained in the lateral ventricles (LV), foramens of Monro, third and fourth ventricles (V3 and V4), the cerebral aqueduct (CA) and the spinal canal (SC), using a velocity encoding (venc) of 5 cm/s. Cerebral blood flow pulsatility was also assessed with 4D flow (venc = 80 cm/s), and CSF volumes were obtained from T1- and T2-weighted MRI. Multiple linear regression was used to assess effects of age, ventricular volumes, and arterial pulsatility on CSF velocities. RESULTS: Cardiac-driven CSF dynamics were observed in all CSF spaces, with region-averaged velocity range and root-mean-square (RMS) velocity encompassing from very low in the LVs (RMS 0.25 ± 0.08; range 0.85 ± 0.28 mm/s) to relatively high in the CA (RMS 6.29 ± 2.87; range 18.6 ± 15.2 mm/s). In the regression models, CSF velocity was significantly related to age in 5/6 regions, to CSF space volume in 2/3 regions, and to arterial pulsatility in 3/6 regions. Group-averaged waveforms indicated distinct CSF flow propagation delays throughout CSF spaces, particularly between the SC and LVs. CONCLUSIONS: Our findings show that 4D flow MRI enables assessment of CSF dynamics throughout the ventricular system, and captures independent effects of age, CSF space morphology, and arterial pulsatility on CSF motion.


Subject(s)
Cerebral Ventricles , Cerebrospinal Fluid , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Aged , Middle Aged , Male , Female , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging/methods , Adult , Pulsatile Flow/physiology , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/physiology , Aging/physiology , Cerebrovascular Circulation/physiology
6.
medRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39211877

ABSTRACT

INTRODUCTION: Lifestyle factors have been studied for dementia risk, but few have comprehensively assessed both Alzheimer's disease (AD) and cerebrovascular disease (CBVD) pathologies. Our research aims to determine the relationships between lifestyle and various dementia pathologies, challenging conventional research paradigms. METHODS: Analyzing 1231 Wisconsin Registry for Alzheimer's Prevention (WRAP) study participants, we focused on Life Simple Seven (LS7) score calculations from questionnaire data and clinical vitals. We assessed brain health indicators including CBVD, AD, and cognition. RESULTS: Higher LS7 scores were associated with better CBVD outcomes, including lower percent white matter hyperintensities and higher cerebral blood flow, and higher Preclinical Alzheimer's Composite 3 and Delayed Recall scores. No significant associations were observed between LS7 scores and AD markers of amyloid and tau accumulation. DISCUSSION: This study provides evidence that the beneficial effects of LS7 on cognition are primarily mediated through cerebrovascular pathways rather than direct influences on AD pathology.

7.
J Neurol Sci ; 464: 123148, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39096836

ABSTRACT

BACKGROUND: Early detection of Alzheimer's disease (AD) is one of the critical components of the global response to the growing dementia crisis. Analysis of serial position performance in story recall tests has yielded sensitive metrics for the prediction of AD at low cost. In this study, we examined whether serial position markers in two story recall tests (the logical memory test, LMT, and the Craft Story 21 test, CST) were sensitive to cross-sectional biomarker-based assessment of in vivo neuropathology. METHODS: Participants were selected from the Wisconsin Registry of Alzheimer's Prevention (n = 288; WRAP) and the Alzheimer's Disease Research Center (n = 156; ADRC), both from the University of Wisconsin-Madison. Average age at PET was 68.9 (6.7) and 67.0 (8.0), respectively. Data included tau and PiB PET, and LMT for WRAP participants and CST for ADRC participants. Two sets of Bayesian analyses (logistic regressions and ANCOVAs) were conducted within each cohort, separately. RESULTS: Results indicated that the A+T+ classification was best predicted, cross-sectionally, by the recency ratio (Rr), indexing how much of the end of the story was forgotten between initial learning and delayed assessment. Rr outperformed traditional scores and discriminated between A+T+ and A+T-/A-T-, in both cohorts. CONCLUSIONS: Overall, this study confirms that serial position analysis of LMT and CST data, and particularly Rr as an index of recency loss, is a valuable tool for the identification of in vivo tau pathology in individuals free of dementia. Diagnostic considerations are discussed.


Subject(s)
Alzheimer Disease , Mental Recall , Positron-Emission Tomography , Humans , Male , Female , Alzheimer Disease/diagnostic imaging , Aged , Positron-Emission Tomography/methods , Mental Recall/physiology , Middle Aged , Cross-Sectional Studies , Neuropsychological Tests , tau Proteins/metabolism , Brain/diagnostic imaging
8.
ArXiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947926

ABSTRACT

Objective: Neighborhood disadvantage is associated with worse health and cognitive outcomes. Morphological similarity network (MSN) is a promising approach to elucidate cortical network patterns underlying complex cognitive functions. We hypothesized that MSNs could capture intricate changes in cortical patterns related to neighborhood disadvantage and cognitive function, potentially explaining some of the risk for later life cognitive impairment among individuals who live in disadvantaged contexts. Methods: This cross-sectional study included cognitively unimpaired participants (n=524, age=62.96±8.377, gender (M:F)=181:343, ADI(L:H) =450,74) from the Wisconsin Alzheimer's Disease Research Center or Wisconsin Registry for Alzheimer's Prevention. Neighborhood disadvantage status was obtained using the Area Deprivation Index (ADI). Cognitive performance was assessed through six tests evaluating memory, executive functioning, and the modified preclinical Alzheimer's cognitive composite (mPACC). Morphological Similarity Networks (MSN) were constructed for each participant based on the similarity in distribution of cortical thickness of brain regions, followed by computation of local and global network features. We used linear regression to examine ADI associations with cognitive scores and MSN features. The mediating effect of MSN features on the relationship between ADI and cognitive performance was statistically assessed. Results: Neighborhood disadvantage showed negative association with category fluency, implicit learning speed, story recall and mPACC scores, indicating worse cognitive function among those living in more disadvantaged neighborhoods. Local network features of frontal and temporal brain regions differed based on ADI status. Centrality of left lateral orbitofrontal region showed a partial mediating effect between association of neighborhood disadvantage and story recall performance. Conclusion: Our findings suggest differences in local cortical organization by neighborhood disadvantage, which also partially mediated the relationship between ADI and cognitive performance, providing a possible network-based mechanism to, in-part, explain the risk for poor cognitive functioning associated with disadvantaged neighborhoods. Future work will examine the exposure to neighborhood disadvantage on structural organization of the brain.

10.
Alzheimers Dement ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970274

ABSTRACT

INTRODUCTION: Understanding longitudinal change in key plasma biomarkers will aid in detecting presymptomatic Alzheimer's disease (AD). METHODS: Serial plasma samples from 424 Wisconsin Registry for Alzheimer's Prevention participants were analyzed for phosphorylated-tau217 (p-tau217; ALZpath) and other AD biomarkers, to study longitudinal trajectories in relation to disease, health factors, and cognitive decline. Of the participants, 18.6% with known amyloid status were amyloid positive (A+); 97.2% were cognitively unimpaired (CU). RESULTS: In the CU, amyloid-negative (A-) subset, plasma p-tau217 levels increased modestly with age but were unaffected by body mass index and kidney function. In the whole sample, average p-tau217 change rates were higher in those who were A+ (e.g., simple slopes(se) for A+ and A- at age 60 were 0.232(0.028) and 0.038(0.013))). High baseline p-tau217 levels predicted faster preclinical cognitive decline. DISCUSSION: p-tau217 stands out among markers for its strong association with disease and cognitive decline, indicating its potential for early AD detection and monitoring progression. HIGHLIGHTS: Phosphorylated-tau217 (p-tau217) trajectories were significantly different in people who were known to be amyloid positive. Subtle age-related trajectories were seen for all the plasma markers in amyloid-negative cognitively unimpaired. Kidney function and body mass index were not associated with plasma p-tau217 trajectories. Higher plasma p-tau217 was associated with faster preclinical cognitive decline.

11.
medRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38947004

ABSTRACT

Plasma p-tau217 and Tau-PET are strong prognostic biomarkers in Alzheimer's disease (AD), but their relative performance in predicting future cognitive decline among cognitively unimpaired (CU) individuals is unclear. In this head-to-head comparison study including 9 cohorts and 1534 individuals, we found that plasma p-tau217 and medial temporal lobe Tau-PET signal showed similar associations with cognitive decline on a global cognitive composite test (R2 PET=0.32 vs R2 PLASMA=0.32, pdifference=0.812) and with progression to mild cognitive impairment (Hazard ratio[HR]PET=1.56[1.43-1.70] vs HRPLASMA=1.63[1.50-1.77], pdifference=0.627). Combined plasma and PET models were superior to the single biomarker models (R2=0.36, p<0.01). Furthermore, sequential selection using plasma p-tau217 and then Tau-PET reduced the number of participants required for a clinical trial by 94%, compared to a 75% reduction when using plasma p-tau217 alone. We conclude that plasma p-tau217 and Tau-PET showed similar performance for predicting future cognitive decline in CU individuals, and their sequential use (i.e., plasma p-tau217 followed by Tau-PET in a subset with high plasma p-tau217) is useful for screening in clinical trials in preclinical AD.

12.
Alzheimers Dement ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041435

ABSTRACT

INTRODUCTION: Tau-positron emission tomography (PET) outcome data of patients with Alzheimer's disease (AD) cannot currently be meaningfully compared or combined when different tracers are used due to differences in tracer properties, instrumentation, and methods of analysis. METHODS: Using head-to-head data from five cohorts with tau PET radiotracers designed to target tau deposition in AD, we tested a joint propagation model (JPM) to harmonize quantification (units termed "CenTauR" [CTR]). JPM is a statistical model that simultaneously models the relationships between head-to-head and anchor point data. JPM was compared to a linear regression approach analogous to the one used in the amyloid PET Centiloid scale. RESULTS: A strong linear relationship was observed between CTR values across brain regions. Using the JPM approach, CTR estimates were similar to, but more accurate than, those derived using the linear regression approach. DISCUSSION: Preliminary findings using the JPM support the development and adoption of a universal scale for tau-PET quantification. HIGHLIGHTS: Tested a novel joint propagation model (JPM) to harmonize quantification of tau PET. Units of common scale are termed "CenTauRs". Tested a Centiloid-like linear regression approach. Using five cohorts with head-to-head tau PET, JPM outperformed linearregressionbased approach. Strong linear relationship was observed between CenTauRs values across brain regions.

13.
Alzheimers Dement ; 20(8): 5347-5356, 2024 08.
Article in English | MEDLINE | ID: mdl-39030746

ABSTRACT

INTRODUCTION: We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS: This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS: Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION: Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS: Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.


Subject(s)
Aging , Biomarkers , Chitinase-3-Like Protein 1 , Heterozygote , Klotho Proteins , Humans , Female , Male , Middle Aged , Biomarkers/cerebrospinal fluid , Aged , Aging/genetics , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/genetics , Glucuronidase/genetics , Glucuronidase/cerebrospinal fluid , Interleukin-6/cerebrospinal fluid , Interleukin-6/genetics , Receptors, Immunologic/genetics , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/cerebrospinal fluid , S100 Calcium Binding Protein beta Subunit/cerebrospinal fluid , S100 Calcium Binding Protein beta Subunit/genetics , Cohort Studies , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/genetics , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , Neurogranin/cerebrospinal fluid , Neurogranin/genetics , Membrane Glycoproteins
15.
Mult Scler ; 30(9): 1193-1204, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38912764

ABSTRACT

BACKGROUND: The Konectom™ smartphone-based cognitive processing speed (CPS) test is designed to assess processing speed and account for impact of visuomotor function on performance. OBJECTIVE: Evaluate reliability and validity of Konectom CPS Test, performed in clinic and remotely. METHODS: Data were collected from people with multiple sclerosis (PwMS) aged 18-64 years and healthy control participants (HC) matched for age, sex, and education. Remote test-retest reliability (intraclass correlation coefficients, ICC); correlation with established clinical measures (Spearman correlation coefficients); group analyses between cognitively impaired/unimpaired PwMS; and influence of age, sex, education, and upper limb motor function on CPS Test measures were assessed. RESULTS: Eighty PwMS and 66 HC participated. CPS Test measures from remote tests had good test-retest reliability (ICC of 0.67-0.87) and correlated with symbol digit modalities test (highest |ρ| = 0.80, p < 0.0001). Remote measures were stable (change from baseline < 5%) and correlated with MS disability (highest |ρ| = 0.39, p = 0.0004) measured by Expanded Disability Status Scale. CPS Test measures displayed sensitivity to cognitive impairment (highest d = 1.47). Demographics and motor function had the lowest impact on CPS Test substitution time, a measure accounting for visuomotor function. CONCLUSION: Konectom CPS Test measures provide valid, reliable remote measurements of cognitive processing speed in PwMS.


Subject(s)
Cognitive Dysfunction , Multiple Sclerosis , Neuropsychological Tests , Humans , Adult , Male , Female , Middle Aged , Reproducibility of Results , Multiple Sclerosis/physiopathology , Multiple Sclerosis/complications , Multiple Sclerosis/diagnosis , Young Adult , Neuropsychological Tests/standards , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Adolescent , Smartphone , Psychomotor Performance/physiology , Outcome Assessment, Health Care , Cognition/physiology , Processing Speed
16.
medRxiv ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38853902

ABSTRACT

IMPORTANCE: Genetic and lifestyle factors contribute to an individual's risk of developing Alzheimer's disease. However, it is unknown whether and how adherence to healthy lifestyles can mitigate the genetic risk of Alzheimer's. OBJECTIVE: The aim of this study is to investigate whether adherence to healthy lifestyles can modify the impact of genetic predisposition to Alzheimer's disease on later-life cognitive decline. DESIGN SETTING AND PARTICIPANTS: This prospective cohort study included 891 adults of European ancestry, aged 40 to 65, who were without dementia and had complete healthy-lifestyle and cognition data during the follow-up. Participants joined the Wisconsin Registry for Alzheimer's Prevention (WRAP) beginning in 2001. We conducted replication analyses using a subsample with similar baseline age range from the Health and Retirement Study (HRS). EXPOSURES: We assessed participants' exposures using a continuous non-APOE polygenic risk score for Alzheimer's, a binary indicator for APOE-ε4 carrier status, and a weighted healthy-lifestyle score, including factors such as no current smoking, regular physical activity, healthy diet, light to moderate alcohol consumption, and frequent cognitive activities. MAIN OUTCOMES AND MEASURES: We z-standardized cognitive scores for global (Preclinical Alzheimer's Cognitive Composite score 3 - PACC3) and domain-specific assessments (delayed recall and immediate learning). RESULTS: We followed 891 individuals for up to 10 years (mean [SD] baseline age, 58 [6] years, 31% male, 38% APOE-ε4 carriers). After false discovery rate (FDR) correction, we found statistically significant PRS × lifestyle × age interactions on preclinical cognitive decline but the evidence is stronger among APOE-ε4 carriers. Among APOE-ε4 carriers, PRS-related differences in overall and memory-related domains between people scoring 0-1 and 4-5 regarding healthy lifestyles became evident around age 67 after FDR correction. These findings were robust across several sensitivity analyses and were replicated in the population-based HRS. CONCLUSION: A favorable lifestyle can mitigate the genetic risk associated with current known non-APOE genetic variants for longitudinal cognitive decline, and these protective effects are particularly pronounced among APOE-ε4 carriers.

17.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915636

ABSTRACT

INTRODUCTION: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. METHODS: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. RESULTS: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. DISCUSSION: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.

18.
Nat Med ; 30(5): 1284-1291, 2024 May.
Article in English | MEDLINE | ID: mdl-38710950

ABSTRACT

This study aimed to evaluate the impact of APOE4 homozygosity on Alzheimer's disease (AD) by examining its clinical, pathological and biomarker changes to see whether APOE4 homozygotes constitute a distinct, genetically determined form of AD. Data from the National Alzheimer's Coordinating Center and five large cohorts with AD biomarkers were analyzed. The analysis included 3,297 individuals for the pathological study and 10,039 for the clinical study. Findings revealed that almost all APOE4 homozygotes exhibited AD pathology and had significantly higher levels of AD biomarkers from age 55 compared to APOE3 homozygotes. By age 65, nearly all had abnormal amyloid levels in cerebrospinal fluid, and 75% had positive amyloid scans, with the prevalence of these markers increasing with age, indicating near-full penetrance of AD biology in APOE4 homozygotes. The age of symptom onset was earlier in APOE4 homozygotes at 65.1, with a narrower 95% prediction interval than APOE3 homozygotes. The predictability of symptom onset and the sequence of biomarker changes in APOE4 homozygotes mirrored those in autosomal dominant AD and Down syndrome. However, in the dementia stage, there were no differences in amyloid or tau positron emission tomography across haplotypes, despite earlier clinical and biomarker changes. The study concludes that APOE4 homozygotes represent a genetic form of AD, suggesting the need for individualized prevention strategies, clinical trials and treatments.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Biomarkers , Homozygote , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Age of Onset , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/cerebrospinal fluid , Amyloid/metabolism , Amyloid/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Cohort Studies , Positron-Emission Tomography , tau Proteins/genetics , tau Proteins/cerebrospinal fluid
19.
Alzheimers Dement ; 20(7): 5044-5053, 2024 07.
Article in English | MEDLINE | ID: mdl-38809917

ABSTRACT

INTRODUCTION: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear. METHODS: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269). RESULTS: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10-5) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10-7). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10-6) and CSF p-tau levels (P = 4.38 × 10-9). DISCUSSION: These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels. HIGHLIGHTS: Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Glutathione Peroxidase , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , DNA-Binding Proteins/genetics , Glutathione Peroxidase/genetics , Glutathione Peroxidase/cerebrospinal fluid , Polymorphism, Single Nucleotide/genetics , Proteomics , tau Proteins/cerebrospinal fluid , tau Proteins/genetics
20.
Elife ; 122024 May 24.
Article in English | MEDLINE | ID: mdl-38787369

ABSTRACT

Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.


Subject(s)
Alzheimer Disease , Biological Specimen Banks , Endophenotypes , Genome-Wide Association Study , Alzheimer Disease/genetics , Humans , Risk Factors , Male , Female , United Kingdom/epidemiology , Aged , Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL