Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Stud Alcohol Drugs ; 79(3): 441-446, 2018 05.
Article in English | MEDLINE | ID: mdl-29885152

ABSTRACT

OBJECTIVE: Research typically characterizes cannabis use by self-report of cannabis intake frequency. In an effort to better understand relationships between measures of cannabis use, we evaluated if Δ-9-tetrahydrocannabinol (THC) and metabolite concentrations (biometrics) were associated with a calibrated timeline followback (TLFB) assessment of cannabis use. METHOD: Participants were 35 young adult male cannabis users who completed a calibrated TLFB measure of cannabis use over the past 30 days, including time of last use. The calibration required participants handling four plastic bags of a cannabis substitute (0.25, 0.5, 1.0, and 3.5 grams) to quantify cannabis consumed. Participants provided blood and urine samples for analysis of THC and metabolites, at two independent laboratories. Participants abstained from cannabis use on the day of sample collection. We tested Pearson correlations between the calibrated TLFB measures and cannabis biometrics. RESULTS: Strong correlations were seen between urine and blood biometrics (all r > .73, all p < .001). TLFB measures of times of use and grams of cannabis consumed were significantly related to each biometric, including urine 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) and blood THC, 11-hydroxy-THC (11-OH-THC), THCCOOH, THCCOOH-glucuronide (times of use: r > .48-.61, all p < .05; grams: r > .40-.49, all p < .05). CONCLUSIONS: This study extends prior work to show TLFB methods significantly relate to an extended array of cannabis biometrics. The calibration of cannabis intake in grams was associated with each biometric, although the simple TLFB measure of times of use produced the strongest relationships with all five biometrics. These findings suggest that combined self-report and biometric data together convey the complexity of cannabis use, but allow that either the use of calibrated TLFB measures or biometrics may be sufficient for assessment of cannabis use in research.


Subject(s)
Dronabinol/administration & dosage , Marijuana Smoking/epidemiology , Substance Abuse Detection/methods , Adolescent , Adult , Humans , Male , Self Report , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...