Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Am J Hematol ; 93(11): 1318-1326, 2018 11.
Article in English | MEDLINE | ID: mdl-30094870

ABSTRACT

Duvelisib (IPI-145), an oral, dual inhibitor of phosphoinositide-3-kinase (PI3K)-δ and -γ, was evaluated in a Phase 1 study in advanced hematologic malignancies, which included expansion cohorts in relapsed/refractory (RR) chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) and treatment-naïve (TN) CLL. Per protocol, TN patients were at least 65 years old or had a del(17p)/TP53 mutation. Duvelisib was administered twice daily (BID) in 28-day cycles at doses of 8-75 mg in RR patients (n = 55) and 25 mg in TN patients (n = 18.) Diarrhea was the most common nonhematologic AE (TN 78%, RR 47%); transaminase elevations the most frequent lab-abnormality AE (TN 33.3%, RR 30.9%); and neutropenia the most common ≥grade 3 AE (RR 44%, TN 33%). The overall response rates were 56.4% for RR patients (1.8% CR, 54.5% PR) and 83.3% for TN patients (all PRs); median response duration was 21.0 months in RR patients but was not reached for TN patients. Based upon phase 1 efficacy, pharmacodynamics, and safety, duvelisib 25 mg BID was selected for further investigation in a phase 3 study in RR CLL/SLL.


Subject(s)
Isoquinolines/administration & dosage , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Purines/administration & dosage , Adult , Aged , Female , Humans , Isoquinolines/adverse effects , Isoquinolines/pharmacokinetics , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Male , Middle Aged , Neutropenia/chemically induced , Phosphoinositide-3 Kinase Inhibitors , Purines/adverse effects , Purines/pharmacokinetics , Remission Induction/methods , Transaminases/drug effects , Treatment Outcome
2.
Am J Hematol ; 93(11): 1311-1317, 2018 11.
Article in English | MEDLINE | ID: mdl-30033575

ABSTRACT

Duvelisib (IPI-145) is an oral dual inhibitor of phosphoinositide-3-kinase (PI3K)-δ and -γ in clinical development for the treatment of hematologic malignancies, including indolent non-Hodgkin lymphoma (iNHL). In a Phase 1, open-label study to determine the maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, clinical activity, and safety of duvelisib monotherapy in patients with advanced hematologic malignancies, duvelisib was administered at eight dose levels (8-100 mg BID) in a dose-escalation phase (n = 31 evaluable patients). Two dose-limiting toxicities (DLTs), Grade 3 transaminase elevations and Grade 3 rash, occurred at 100 mg BID, and the MTD was determined to be 75 mg BID. Across all doses, 58.1% of iNHL patients had a response (19.4% complete, 35.5% partial, and 3.2% minor); median time to response was 1.84 months and duration of response was 16.9 months. Median progression-free survival was 14.7 months, and the probability of overall survival at 24 months was 71.7%. Severe (Grade ≥ 3) adverse events included elevated liver enzymes (38.7%), diarrhea (25.8%), and neutropenia (29.0%). Three patients, all in the 75 mg BID cohort, experienced fatal AEs: E. coli sepsis, acute respiratory failure, and fungal pneumonia. No iNHL patients experienced Pneumocystis pneumonia. Duvelisib demonstrated favorable clinical activity and an acceptable safety profile in these high-risk, heavily pretreated, relapsed/refractory iNHL patients, with 25 mg BID selected for further clinical development.


Subject(s)
Isoquinolines/administration & dosage , Lymphoma, Non-Hodgkin/drug therapy , Purines/administration & dosage , Adult , Aged , Exanthema/chemically induced , Female , Humans , Isoquinolines/toxicity , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/mortality , Male , Maximum Tolerated Dose , Middle Aged , Phosphoinositide-3 Kinase Inhibitors , Purines/toxicity , Survival Analysis , Transaminases/drug effects , Treatment Outcome
3.
Blood ; 131(8): 888-898, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29233821

ABSTRACT

Duvelisib (IPI-145) is an oral inhibitor of phosphatidylinositol 3-kinase (PI3K)-δ/γ isoforms currently in clinical development. PI3K-δ/γ inhibition may directly inhibit malignant T-cell growth, making duvelisib a promising candidate for patients with peripheral (PTCL) or cutaneous (CTCL) T-cell lymphoma. Inhibition of either isoform may also contribute to clinical responses by modulating nonmalignant immune cells. We investigated these dual effects in a TCL cohort from a phase 1, open-label study of duvelisib in patients with relapsed or refractory PTCL (n = 16) and CTCL (n = 19), along with in vitro and in vivo models of TCL. The overall response rates in patients with PTCL and CTCL were 50.0% and 31.6%, respectively (P = .32). There were 3 complete responses, all among patients with PTCL. Activity was seen across a wide spectrum of subtypes. The most frequently observed grade 3 and 4 adverse events were transaminase increases (40% alanine aminotransferase, 17% aspartate aminotransferase), maculopapular rash (17%), and neutropenia (17%). Responders and nonresponders had markedly different changes in serum cytokine profiles induced by duvelisib. In vitro, duvelisib potently killed 3 of 4 TCL lines with constitutive phospho-AKT (pAKT) vs 0 of 7 lines lacking pAKT (P = .024) and exceeded cell killing by the PI3K-δ-specific inhibitor idelalisib. Administration of duvelisib to mice engrafted with a PTCL patient-derived xenograft resulted in a shift among tumor-associated macrophages from the immunosuppressive M2-like phenotype to the inflammatory M1-like phenotype. In summary, duvelisib demonstrated promising clinical activity and an acceptable safety profile in relapsed/refractory TCL, as well as preclinical evidence of both tumor cell-autonomous and immune-mediated effects. This trial was registered at www.clinicaltrials.gov as #NCT01476657.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Isoquinolines/administration & dosage , Isoquinolines/pharmacokinetics , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Peripheral/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Purines/administration & dosage , Purines/pharmacokinetics , Skin Neoplasms/drug therapy , Administration, Oral , Adult , Aged , Aged, 80 and over , Class Ib Phosphatidylinositol 3-Kinase , Female , Humans , Isoquinolines/pharmacology , Lymphoma, T-Cell, Cutaneous/enzymology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Peripheral/enzymology , Lymphoma, T-Cell, Peripheral/pathology , Male , Maximum Tolerated Dose , Middle Aged , Prognosis , Purines/pharmacology , Safety , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Tissue Distribution
4.
Nature ; 539(7629): 443-447, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27828943

ABSTRACT

Recent clinical trials using immunotherapy have demonstrated its potential to control cancer by disinhibiting the immune system. Immune checkpoint blocking (ICB) antibodies against cytotoxic-T-lymphocyte-associated protein 4 or programmed cell death protein 1/programmed death-ligand 1 have displayed durable clinical responses in various cancers. Although these new immunotherapies have had a notable effect on cancer treatment, multiple mechanisms of immune resistance exist in tumours. Among the key mechanisms, myeloid cells have a major role in limiting effective tumour immunity. Growing evidence suggests that high infiltration of immune-suppressive myeloid cells correlates with poor prognosis and ICB resistance. These observations suggest a need for a precision medicine approach in which the design of the immunotherapeutic combination is modified on the basis of the tumour immune landscape to overcome such resistance mechanisms. Here we employ a pre-clinical mouse model system and show that resistance to ICB is directly mediated by the suppressive activity of infiltrating myeloid cells in various tumours. Furthermore, selective pharmacologic targeting of the gamma isoform of phosphoinositide 3-kinase (PI3Kγ), highly expressed in myeloid cells, restores sensitivity to ICB. We demonstrate that targeting PI3Kγ with a selective inhibitor, currently being evaluated in a phase 1 clinical trial (NCT02637531), can reshape the tumour immune microenvironment and promote cytotoxic-T-cell-mediated tumour regression without targeting cancer cells directly. Our results introduce opportunities for new combination strategies using a selective small molecule PI3Kγ inhibitor, such as IPI-549, to overcome resistance to ICB in patients with high levels of suppressive myeloid cell infiltration in tumours.


Subject(s)
Cell Cycle Checkpoints/drug effects , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Melanoma/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/immunology , Female , Humans , Immune Tolerance/drug effects , Male , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/enzymology , Neoplasm Metastasis/drug therapy , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
5.
Cell Rep ; 12(3): 495-510, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26166562

ABSTRACT

Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and ß-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into ß-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.


Subject(s)
Amino Acids/metabolism , Glucagon/metabolism , Liver/cytology , Liver/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Proliferation , Metabolism , Mice , Signal Transduction
6.
Clin Cancer Res ; 21(9): 2065-74, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25649019

ABSTRACT

PURPOSE: To investigate the clinical relevance of PTEN in HER2-amplified and HER2-nonamplified disease. EXPERIMENTAL DESIGN: We assessed PTEN status in two large adjuvant breast cancer trials (BCIRG-006 and BCIRG-005) using a PTEN immunohistochemical (IHC) assay that was previously validated in a panel of 33 breast cancer cell lines and prostate cancer tissues with known PTEN gene deletion. RESULTS: In the HER2-positive patient population, absence of tumor cell PTEN staining occurred at a rate of 5.4% and was independent of ER/PR status. In contrast, 15.9% of HER2-negative patients exhibited absence of PTEN staining with the highest frequency seen in triple-negative breast cancer (TNBC) subgroup versus ER/PR-positive patients (35.1% vs. 10.9%). Complete absence of PTEN staining in tumor cells was associated with poor clinical outcome in HER2-positive disease. Those patients whose cancers demonstrated absent PTEN staining had a significant decrease in disease-free survival (DFS) and overall survival (OS) compared with patients with tumors exhibiting any PTEN staining patterns (low, moderate, or high). Trastuzumab appeared to provide clinical benefit even for patients lacking PTEN staining. In the HER2-negative population, there were no statistically significant differences in clinical outcome based on PTEN status. CONCLUSIONS: This study is the largest to date examining PTEN status in breast cancer and the data suggest that the rate and significance of PTEN status differ between HER2-positive and HER2-negative disease. Furthermore, the data clearly suggest that HER2-positive patients with PTEN loss still benefit from trastuzumab.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , PTEN Phosphohydrolase/genetics , Receptor, ErbB-2/genetics , Adult , Aged , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Female , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Middle Aged , Proportional Hazards Models , Tissue Array Analysis , Trastuzumab/therapeutic use
7.
PLoS One ; 9(12): e115228, 2014.
Article in English | MEDLINE | ID: mdl-25542032

ABSTRACT

HSP90 inhibitors are currently undergoing clinical evaluation in combination with antimitotic drugs in non-small cell lung cancer (NSCLC), but little is known about the cellular effects of this novel drug combination. Therefore, we investigated the molecular mechanism of action of IPI-504 (retaspimycin HCl), a potent and selective inhibitor of HSP90, in combination with the microtubule targeting agent (MTA) docetaxel, in preclinical models of NSCLC. We identified a subset of NSCLC cell lines in which these drugs act in synergy to enhance cell death. Xenograft models of NSCLC demonstrated tumor growth inhibition, and in some cases, regression in response to combination treatment. Treatment with IPI-504 enhanced the antimitotic effects of docetaxel leading to the hypothesis that the mitotic checkpoint is required for the response to drug combination. Supporting this hypothesis, overriding the checkpoint with an Aurora kinase inhibitor diminished the cell death synergy of IPI-504 and docetaxel. To investigate the molecular basis of synergy, an unbiased stable isotope labeling by amino acids in cell culture (SILAC) proteomic approach was employed. Several mitotic regulators, including components of the ubiquitin ligase, anaphase promoting complex (APC/C), were specifically down-regulated in response to combination treatment. Loss of APC/C by RNAi sensitized cells to docetaxel and enhanced its antimitotic effects. Treatment with a PLK1 inhibitor (BI2536) also sensitized cells to IPI-504, indicating that combination effects may be broadly applicable to other classes of mitotic inhibitors. Our data provide a preclinical rationale for testing the combination of IPI-504 and docetaxel in NSCLC.


Subject(s)
Benzoquinones/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/administration & dosage , Lung Neoplasms/drug therapy , Taxoids/administration & dosage , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Benzoquinones/pharmacology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Docetaxel , Down-Regulation , Drug Synergism , Humans , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/metabolism , Male , Taxoids/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays
8.
Nat Commun ; 5: 3830, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24807215

ABSTRACT

Gastric cancer is the second leading cause of worldwide cancer mortality, yet the underlying genomic alterations remain poorly understood. Here we perform exome and transcriptome sequencing and SNP array assays to characterize 51 primary gastric tumours and 32 cell lines. Meta-analysis of exome data and previously published data sets reveals 24 significantly mutated genes in microsatellite stable (MSS) tumours and 16 in microsatellite instable (MSI) tumours. Over half the patients in our collection could potentially benefit from targeted therapies. We identify 55 splice site mutations accompanied by aberrant splicing products, in addition to mutation-independent differential isoform usage in tumours. ZAK kinase isoform TV1 is preferentially upregulated in gastric tumours and cell lines relative to normal samples. This pattern is also observed in colorectal, bladder and breast cancers. Overexpression of this particular isoform activates multiple cancer-related transcription factor reporters, while depletion of ZAK in gastric cell lines inhibits proliferation. These results reveal the spectrum of genomic and transcriptomic alterations in gastric cancer, and identify isoform-specific oncogenic properties of ZAK.


Subject(s)
Protein Isoforms/genetics , Protein Kinases/genetics , Stomach Neoplasms/genetics , Base Sequence , Cell Line , Cell Proliferation/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , MAP Kinase Kinase Kinases , Microsatellite Instability , Microsatellite Repeats/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Receptor, ErbB-2/genetics , Sequence Analysis, DNA , Transcriptome/genetics
9.
Cancer Res ; 74(11): 3114-26, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24755469

ABSTRACT

Cancer genomes maintain a complex array of somatic alterations required for maintenance and progression of the disease, posing a challenge to identify driver genes among this genetic disorder. Toward this end, we mapped regions of recurrent amplification in a large collection (n=392) of primary human cancers and selected 620 genes whose expression is elevated in tumors. An RNAi loss-of-function screen targeting these genes across a panel of 32 cancer cell lines identified potential driver genes. Subsequent functional assays identified SHMT2, a key enzyme in the serine/glycine synthesis pathway, as necessary for tumor cell survival but insufficient for transformation. The 26S proteasomal subunit, PSMB4, was identified as the first proteasomal subunit with oncogenic properties promoting cancer cell survival and tumor growth in vivo. Elevated expression of SHMT2 and PSMB4 was found to be associated with poor prognosis in human cancer, supporting the development of molecular therapies targeting these genes or components of their pathways.


Subject(s)
Oncogenes , Proteasome Endopeptidase Complex/genetics , Animals , Catalysis , Cell Line , Cell Line, Tumor , Cell Survival , DNA Copy Number Variations , Disease Progression , Gene Deletion , Genome , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Prognosis , RNA Interference
10.
Cancer Cell ; 23(5): 603-17, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23680147

ABSTRACT

The human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ~11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo.


Subject(s)
Colonic Neoplasms/genetics , Mutation , Receptor, ErbB-3/genetics , Stomach Neoplasms/genetics , Binding Sites , Cell Proliferation , Cell Survival/genetics , Cell Transformation, Neoplastic/genetics , Gene Knockdown Techniques , Humans , Models, Molecular , Protein Structure, Tertiary , Receptor, ErbB-3/metabolism , Receptor, ErbB-3/physiology
11.
PLoS One ; 8(2): e56765, 2013.
Article in English | MEDLINE | ID: mdl-23468880

ABSTRACT

PURPOSE: Tumors with oncogenic dependencies on the HER family of receptor tyrosine kinases (RTKs) often respond well to targeted inhibition. Our previous work suggested that many cell lines derived from squamous cell carcinomas of the head and neck (SCCHNs) depend on autocrine signaling driven by HER2/3 dimerization and high-level co-expression of HRG. Additionally, results from a Phase I trial of MEHD7495A, a dual-action antibody that blocks ligand binding to EGFR and HER3, suggest that high-level HRG expression was associated with clinical response in SCCHN patients. Here we explore the hypothesis that high-level HRG expression defines a subpopulation of SCCHNs with activated HER3. EXPERIMENTAL DESIGN: qRT-PCR expression profiling was performed on >750 tumors of diverse origin, including >150 therapy-naïve, primary, and recurrent SCCHNs. Activated HER3, defined by immunoprecipitation of phospho-HER3, was compared to HRG expression in SCCHN samples. Paracrine versus autocrine expression was evaluated using RNA-in situ hybridization. RESULTS: SCCHN tumors express the highest levels of HRG compared to a diverse collection of other tumor types. We show that high HRG expression is associated with activated HER3, whereas low HRG expression is associated with low HER3 activation in SCCHN tumors. Furthermore, HRG expression is higher in recurrent SCCHN compared to patient-matched therapy naïve specimens. CONCLUSIONS: HRG expression levels define a biologically distinct subset of SCCHN patients. We propose that high-level expression of HRG is associated with constitutive activation of HER3 in SCCHN and thus defines an actionable biomarker for interventions targeting HER3.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Head and Neck Neoplasms/metabolism , Neuregulin-1/metabolism , Receptor, ErbB-3/metabolism , Biomarkers, Tumor , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Gene Expression , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Immunohistochemistry , Neuregulin-1/genetics , Receptor, ErbB-3/genetics , Squamous Cell Carcinoma of Head and Neck
12.
Breast Cancer Res Treat ; 138(1): 99-108, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23420271

ABSTRACT

A comprehensive, blinded, pathology evaluation of HER2 testing in HER2-positive/negative breast cancers was performed among three central laboratories. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) analyses were performed on 389 tumor blocks from three large adjuvant trials: N9831, BCIRG-006, and BCIRG-005. In 123 cases, multiple blocks were examined. HER2 status was defined according to FDA-approved guidelines and was independently re-assessed at each site. Discordant cases were adjudicated at an on-site, face-to-face meeting. Results across three independent pathologists were concordant by IHC in 351/381 (92 %) and FISH in 343/373 (92 %) blocks. Upon adjudication, consensus was reached on 16/30 and 18/30 of discordant IHC and FISH cases, respectively, resulting in overall concordance rates of 96 and 97 %. Among 155 HER2-negative blocks, HER2 status was confirmed in 153 (99 %). In the subset of 102 HER2-positive patients from N9831/BCIRG-006, primary blocks from discordant cases were selected, especially those with discordant test between local and central laboratories. HER2 status was confirmed in 73 (72 %) of these cases. Among 118 and 113 cases with IHC and FISH results and >1 block evaluable, block-to-block variability/heterogeneity in HER2 results was seen in 10 and 5 %, respectively. IHC-/FISH- was confirmed for 57/59 (97 %) primary blocks from N9831 (locally positive, but centrally negative); however, 5/22 (23 %) secondary blocks showed HER2 positivity. Among 53 N9831 patients with HER2-normal disease adjudicated as IHC-/FISH-(although locally positive), there was a non-statistically significant improvement in disease-free survival with concurrent trastuzumab compared to chemotherapy alone (adjusted hazard ratio 0.34; 95 % CI, 0.11-1.05; p = 0.06). There were similar agreements for IHC and FISH among pathologists (92 % each). Agreement was improved at adjudication (96 %). HER2 tumor heterogeneity appears to partially explain discordant results in cases initially tested as positive and subsequently called negative.


Subject(s)
Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Adult , Aged , Biomarkers, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Chemotherapy, Adjuvant , Female , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Middle Aged , Reproducibility of Results
13.
Proc Natl Acad Sci U S A ; 109(47): 19368-73, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23134728

ABSTRACT

The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain-kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD. To understand these autoinhibitory interactions, we generated mutations at the PH-KD interface and found that most of them lead to constitutive activation of AKT. Such mutations are likely another mechanism by which activation may occur in human cancers and other diseases. In support of this likelihood, we found somatic mutations in AKT1 at the PH-KD interface that have not been previously described in human cancers. Furthermore, we show that the AKT1 somatic mutants are constitutively active, leading to oncogenic signaling. Additionally, our studies show that the AKT1 mutants are not effectively inhibited by allosteric AKT inhibitors, consistent with the requirement for an intact PH-KD interface for allosteric inhibition. These results have important implications for therapeutic intervention in patients with AKT mutations at the PH-KD interface.


Subject(s)
Neoplasms/enzymology , Neoplasms/genetics , Oncogenes/genetics , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Animals , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/enzymology , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Enzyme Activation/drug effects , Humans , Mice , Models, Molecular , Mutant Proteins/metabolism , Mutation/genetics , NIH 3T3 Cells , Protein Binding/drug effects , Protein Binding/genetics , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Genome Res ; 22(12): 2315-27, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23033341

ABSTRACT

Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples. Smoker and never-smoker cancer samples exhibit distinguishable patterns of mutations. A number of epigenetic regulators, including KDM6A, ASH1L, SMARCA4, and ATAD2, are frequently altered by mutations or copy number changes. A systematic survey of splice-site mutations identified 106 splice site mutations associated with cancer specific aberrant splicing, including mutations in several known cancer-related genes. RAC1b, an isoform of the RAC1 GTPase that includes one additional exon, was found to be preferentially up-regulated in lung cancer. We further show that its expression is significantly associated with sensitivity to a MAP2K (MEK) inhibitor PD-0325901. Taken together, these data present a comprehensive genomic landscape of a large number of lung cancer samples and further demonstrate that cancer-specific alternative splicing is a widespread phenomenon that has potential utility as therapeutic biomarkers. The detailed characterizations of the lung cancer cell lines also provide genomic context to the vast amount of experimental data gathered for these lines over the decades, and represent highly valuable resources for cancer biology.


Subject(s)
Alternative Splicing , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Lung Neoplasms/genetics , Mutation , Transcriptome , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Line, Tumor , DNA Copy Number Variations , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenomics , Exons , Genetic Markers , Heterozygote , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase , Humans , Karyotyping/methods , Lung Neoplasms/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polymorphism, Single Nucleotide , Reproducibility of Results , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism
15.
Cancer Invest ; 30(10): 727-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23061802

ABSTRACT

In this multicenter phase Ib study, drozitumab was given in combination with the mFOLFOX6 regimen and bevacizumab in patients with previously untreated, locally advanced recurrent or metastatic colorectal cancer on day 1 of every 14-day cycle. Nine patients were treated at 2 different cohort dose levels of drozitumab. No dose-limiting toxicities occurred at either dose level and the maximum tolerated dose was not reached. Two patients had a partial response of 4.93 and 4.96 months duration. Cohort 2 dose level is the recommended starting dose level for future trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma/drug therapy , Colorectal Neoplasms/drug therapy , Adult , Aged , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Carcinoma/genetics , Carcinoma/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Disease-Free Survival , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Immunohistochemistry , Leucovorin/administration & dosage , Leucovorin/adverse effects , Male , Maximum Tolerated Dose , Middle Aged , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects
16.
Nat Genet ; 44(10): 1111-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22941189

ABSTRACT

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines. We identified 22 significantly mutated genes in SCLC, including genes encoding kinases, G protein-coupled receptors and chromatin-modifying proteins. We found that several members of the SOX family of genes were mutated in SCLC. We also found SOX2 amplification in ∼27% of the samples. Suppression of SOX2 using shRNAs blocked proliferation of SOX2-amplified SCLC lines. RNA sequencing identified multiple fusion transcripts and a recurrent RLF-MYCL1 fusion. Silencing of MYCL1 in SCLC cell lines that had the RLF-MYCL1 fusion decreased cell proliferation. These data provide an in-depth view of the spectrum of genomic alterations in SCLC and identify several potential targets for therapeutic intervention.


Subject(s)
Gene Amplification , Lung Neoplasms/genetics , SOXB1 Transcription Factors/genetics , Small Cell Lung Carcinoma/genetics , Base Sequence , Cell Line, Tumor , DNA Copy Number Variations , DNA Mutational Analysis , Exome , Gene Expression , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/metabolism , Molecular Sequence Data , Mutation , Oncogene Proteins, Fusion/genetics , Protein Kinases/genetics , SOXB1 Transcription Factors/metabolism , Small Cell Lung Carcinoma/metabolism
17.
Cancer Cell ; 22(1): 80-90, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22789540

ABSTRACT

The proapoptotic death receptor DR5 has been studied extensively in cancer cells, but its action in the tumor microenvironment is not well defined. Here, we uncover a role for DR5 signaling in tumor endothelial cells (ECs). We detected DR5 expression in ECs within tumors but not normal tissues. Treatment of tumor-bearing mice with an oligomeric form of the DR5 ligand Apo2L/TRAIL induced apoptosis in tumor ECs, collapsing blood vessels and reducing tumor growth: Vascular disruption and antitumor activity required DR5 expression on tumor ECs but not malignant cells. These results establish a therapeutic paradigm for proapoptotic receptor agonists as selective tumor vascular disruption agents, providing an alternative, perhaps complementary, strategy to their use as activators of apoptosis in malignant cells.


Subject(s)
Apoptosis , Cell Division , Endothelium, Vascular/metabolism , Neoplasms/blood supply , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Animals , Humans , Mice , Neoplasms/pathology
18.
Clin Cancer Res ; 18(12): 3478-86, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22504044

ABSTRACT

PURPOSE: The mechanisms by which trastuzumab imparts clinical benefit remain incompletely understood. Antibody-dependent cellular cytotoxicity via interactions with Fcγ receptors (FcγR) on leukocytes may contribute to its antitumor effects. Single-nucleotide polymorphisms (SNP) in FCGR3A and FCGR2A genes lead to amino acid substitutions at positions 158 and 131, respectively, and affect binding of antibodies to FcγR such that 158V/V and 131H/H bind with highest affinity. This study aimed to determine whether high-affinity SNPs are associated with disease-free survival (DFS) among patients with HER2-positive nonmetastatic breast cancer. EXPERIMENTAL DESIGN: Genomic DNA was isolated from 1,286 patients enrolled in a trial of adjuvant trastuzumab-based chemotherapy. Genotyping was conducted using Sanger sequencing and Sequenom mass spectrometry. RESULTS: Patient samples (N = 1,189) were successfully genotyped for FCGR3A and 1,218 for FCGR2A. Compared with the overall results of the BCIRG006 study, in the subset of patients genotyped in this analysis, a less robust improvement in DFS was observed for the trastuzumab arms than control arm (HR, 0.842; P = 0.1925). When stratified for prognostic features, the HR in favor of trastuzumab was consistent with that of the overall study (HR, 0.74; P = 0.036). No correlation between DFS and FCGR3A/2A genotypes was seen for trastuzumab-treated patients (158V/V vs. V/F vs. F/F, P = 0.98; 131H/H vs. H/R vs. R/R, P = 0.76; 158V/V and/or 131H/H vs. others, P = 0.67). CONCLUSION: This analysis evaluating the association between FCGR3A/2A genotypes and trastuzumab efficacy in HER2-positive breast cancer did not show a correlation between FCGR3A-V/F and FCGR2A-H/R SNPs and DFS in patients treated with trastuzumab.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Receptors, IgG/genetics , Adult , Aged , Amino Acid Substitution , Breast Neoplasms/immunology , Female , Gene Frequency , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Receptors, IgG/blood , Trastuzumab , Treatment Outcome , Young Adult
19.
Sci Transl Med ; 4(127): 127rv2, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22461643

ABSTRACT

Amplification of the ERBB2 gene, which encodes human epidermal growth factor receptor 2 (HER2), causes the overexpression of a major proliferative driver for a subset of breast and gastric cancers. Treatments for patients with HER2-positive cancer include the monoclonal antibody trastuzumab and, in the case of metastatic breast cancer, the tyrosine kinase inhibitor lapatinib. Despite significant improvement in patient outcome as a result of these therapies, challenges remain. This Review focuses on proposed mechanisms of action and resistance in the context of potential new therapeutic options. Therapeutic approaches currently in development likely will yield additional clinically meaningful improvements for patients with HER2-positive cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Receptor, ErbB-2/antagonists & inhibitors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Drug Resistance, Neoplasm/drug effects , Female , Humans , Receptor, ErbB-2/metabolism , Translational Research, Biomedical
20.
Clin Cancer Res ; 18(8): 2360-73, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22261801

ABSTRACT

PURPOSE: Non-small cell lung cancers (NSCLC) comprise multiple distinct biologic groups with different prognoses. For example, patients with epithelial-like tumors have a better prognosis and exhibit greater sensitivity to inhibitors of the epidermal growth factor receptor (EGFR) pathway than patients with mesenchymal-like tumors. Here, we test the hypothesis that epithelial-like NSCLCs can be distinguished from mesenchymal-like NSCLCs on the basis of global DNA methylation patterns. EXPERIMENTAL DESIGN: To determine whether phenotypic subsets of NSCLCs can be defined on the basis of their DNA methylation patterns, we combined microfluidics-based gene expression analysis and genome-wide methylation profiling. We derived robust classifiers for both gene expression and methylation in cell lines and tested these classifiers in surgically resected NSCLC tumors. We validate our approach using quantitative reverse transcriptase PCR and methylation-specific PCR in formalin-fixed biopsies from patients with NSCLC who went on to fail front-line chemotherapy. RESULTS: We show that patterns of methylation divide NSCLCs into epithelial-like and mesenchymal-like subsets as defined by gene expression and that these signatures are similarly correlated in NSCLC cell lines and tumors. We identify multiple differentially methylated regions, including one in ERBB2 and one in ZEB2, whose methylation status is strongly associated with an epithelial phenotype in NSCLC cell lines, surgically resected tumors, and formalin-fixed biopsies from patients with NSCLC who went on to fail front-line chemotherapy. CONCLUSIONS: Our data show that patterns of DNA methylation can divide NSCLCs into two phenotypically distinct subtypes of tumors and provide proof of principle that differences in DNA methylation can be used as a platform for predictive biomarker discovery and development.


Subject(s)
Carcinoma, Non-Small-Cell Lung/classification , Carcinoma, Non-Small-Cell Lung/genetics , DNA Methylation/genetics , Lung Neoplasms/classification , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , CpG Islands/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genome-Wide Association Study , Homeodomain Proteins/genetics , Humans , Lung/pathology , Lung Neoplasms/pathology , Phenotype , Prognosis , Receptor, ErbB-2/genetics , Repressor Proteins/genetics , Zinc Finger E-box Binding Homeobox 2
SELECTION OF CITATIONS
SEARCH DETAIL
...