Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2319641121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38709918

ABSTRACT

One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.


Subject(s)
Anxiety , Arginine Vasopressin , Social Behavior , Animals , Female , Male , Mice , Anxiety/metabolism , Arginine Vasopressin/metabolism , Behavior, Animal/physiology , Mice, Inbred C57BL , Neurons/metabolism , Neurons/physiology , Optogenetics , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Septal Nuclei/metabolism , Septal Nuclei/physiology
2.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38176904

ABSTRACT

NMDA receptors (NMDARs) modulate glutamatergic excitatory tone in the brain via two complementary modalities: a phasic excitatory postsynaptic current and a tonic extrasynaptic modality. Here, we demonstrated that the tonic NMDAR-current (I NMDA) mediated by NR2A-containing NMDARs is an efficient biosensor detecting the altered ambient glutamate level in the supraoptic nucleus (SON). I NMDA of magnocellular neurosecretory cells (MNCs) measured by nonselective NMDARs antagonist, AP5, at holding potential (V holding) -70 mV in low concentration of ECF Mg2+ ([Mg2+]o) was transiently but significantly increased 1-week post induction of a DOCA salt hypertensive model rat which was compatible with that induced by a NR2A-selective antagonist, PEAQX (I PEAQX) in both DOCA-H2O and DOCA-salt groups. In agreement, NR2B antagonist, ifenprodil, or NR2C/D antagonist, PPDA, did not affect the holding current (I holding) at V holding -70 mV. Increased ambient glutamate by exogenous glutamate (10 mM) or excitatory amino acid transporters (EAATs) antagonist (TBOA, 50 mM) abolished the I PEAQX difference between two groups, suggesting that attenuated EAATs activity increased ambient glutamate concentration, leading to the larger I PEAQX in DOCA-salt rats. In contrast, only ifenprodil but not PEAQX and PPDA uncovered I NMDA at V holding +40 mV under 1.2 mM [Mg2+]o condition. I ifenprodil was not different in DOCA-H2O and DOCA-salt groups. Finally, NR2A, NR2B, and NR2D protein expression were not different in the SON of the two groups. Taken together, NR2A-containing NMDARs efficiently detected the increased ambient glutamate concentration in the SON of DOCA-salt hypertensive rats due to attenuated EAATs activity.


Subject(s)
Desoxycorticosterone Acetate , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Glutamic Acid/metabolism , Supraoptic Nucleus/metabolism , Excitatory Amino Acid Antagonists/pharmacology
3.
J Nutr Biochem ; 124: 109535, 2024 02.
Article in English | MEDLINE | ID: mdl-37984734

ABSTRACT

Approximately 650,000 new cases of heart failure (HF) are diagnosed annually with a 50% five-year mortality rate. HF is characterized by reduced left ventricular (LV) ejection fraction and hypertrophy of the LV wall. The pathophysiological remodeling of the heart is mediated by increased oxidative stress and inflammation. Raspberries are rich in polyphenols which may favorably impact enzymes involved in redox homeostasis while also targeting inflammatory signaling. Thus, the objective of this study was to investigate whether raspberry polyphenols could attenuate HF. Sprague Dawley rats consumed a 10% (w/w) raspberry diet for 7 weeks. At week 3, HF was surgically induced via coronary artery ligation. Hemodynamics and morphology of the heart were assessed. Expression of cardiac proteins involved in oxidative stress, inflammation, apoptosis, and remodeling were examined, and histological analysis was conducted. Additionally, human cardiomyocytes were treated with raspberry polyphenol extract (RBPE) followed by CoCl2 to chemically induce hypoxia. Redox status, apoptosis, and mitochondrial dysfunction were measured. Raspberries attenuated reductions in cardiac function and reduced morphological changes which coincided with reduced toll-like receptor (TLR)4 signaling. Reductions in oxidative stress, apoptosis, and remodeling occurred in vivo. Incubation of cardiomyocytes with RBPE attenuated CoCl2-induced oxidative stress and apoptosis despite pronounced hypoxia-inducible factor (HIF)-1α expression. These data indicate that consumption of raspberries can reduce the underlying molecular drivers of HF; thus, leading to the observed improvements in cardiac functional capacity and morphology. This dietary strategy may be an effective alternative strategy for treating HF. However, further investigation into alternative models of HF is warranted.


Subject(s)
Cobalt , Heart Failure , Rubus , Rats , Animals , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Rats, Sprague-Dawley , Heart Failure/drug therapy , Inflammation , Hypoxia , Ventricular Remodeling
4.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045233

ABSTRACT

Aims: Heart failure (HF) patients often suffer from cognitive decline, depression, and mood impairments, but the molecular signals and brain circuits underlying these effects remain elusive. The hypothalamic neuropeptide oxytocin (OT) is critically involved in the regulation of mood, and OTergic signaling in the central amygdala (CeA) is a key mechanism controlling emotional responses including anxiety-like behaviors. Based on this, we used in this study a well-established ischemic rat HF model and aimed to study alterations in the hypothalamus-to-CeA OTergic circuit. Methods and Results: To study potential HF-induced changes in the hypothalamus-to-CeA OTertic circuit, we combined patch-clamp electrophysiology, immunohistochemical analysis, RNAScope assessment of OTR mRNA, brain region-specific stereotaxic injections of viral vectors and retrograde tracing, optogenetic stimulation and OT biosensors in the ischemic HF model. We found that most of OTergic innervation of the central amygdala (CeA) originated from the hypothalamic supraoptic nucleus (SON). While no differences in the numbers of SON→CeA OTertic neurons (or their OT content) was observed between sham and HF rats, we did observe a blunted content and release of OT from axonal terminals within the CeA. Moreover, we report downregulation of neuronal and astrocytic OT receptors, and impaired OTR-driven GABAergic synaptic activity within the CeA microcircuit of rats with HF. Conclusions: Our study provides first evidence that HF rats display various perturbations in the hypothalamus-to-amygdala OTergic circuit, and lays the foundation for future translational studies targeting either the OT system or GABAergic amygdala GABA microcircuit to ameliorate depression or mood impairments in rats or patients with chronic HF.

5.
iScience ; 26(11): 108243, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026155

ABSTRACT

Neuropeptides are packed into large dense core vesicles (LDCVs) that are transported from the soma out into their processes. Limited information exists regarding mechanisms regulating LDCV trafficking, particularly during challenges to bodily homeostasis. Addressing this gap, we used 2-photon imaging in an ex vivo preparation to study LDCVs trafficking dynamics in vasopressin (VP) neurons, which traffic and release neuropeptide from their dendrites and axons. We report a dynamic bidirectional trafficking of VP-LDCVs with important differences in speed and directionality between axons and dendrites. Acute, short-lasting stimuli known to alter VP firing activity and axonal/dendritic release caused modest changes in VP-LDCVs trafficking dynamics. Conversely, chronic/sustained systemic osmotic challenges upregulated VP-LDCVs trafficking dynamic, with a larger effect in dendrites. These results support differential regulation of dendritic and axonal LDCV trafficking, and that changes in trafficking dynamics constitute a novel mechanism by which peptidergic neurons can efficiently adapt to conditions of increased hormonal demand.

6.
Front Cell Neurosci ; 17: 1125029, 2023.
Article in English | MEDLINE | ID: mdl-37032839

ABSTRACT

It is generally assumed that dendritic release of neuropeptides from magnocellular neurosecretory neurons (MNNs), a critical process involved in homeostatic functions, is an activity-dependent process that requires backpropagating action potentials (APs). Still, growing evidence indicates that dendritic release can occur in the absence of APs, and axonal APs have been shown to fail to evoke dendritic release. These inconsistencies strongly suggest that APs in MNNs may fail to backpropagating into dendrites. Here we tested whether simple factors of electrical signal attenuation could lead to effective decoupling between cell's body and dendritic release site within typical geometrical characteristics of MNN. We developed a family of linear mathematical models of MNNs and evaluated whether the somato-dendritic transfer of electrical signals is influenced by the geometrical characteristics. We determined the prerequisites for critically strong dendritic attenuation of the somatic input which are sufficient to explain the failure of APs initiated in the soma to backpropagating into dendritic compartments. Being measured in 100 µm from soma voltage attenuations down to 0.1 and 0.01 of the input value were chosen as the markers of electrical decoupling of dendritic sites from the soma, considering 0.1 insufficient for triggering dendritic spikes and 0.01 indistinguishable from background noise. The tested micro-geometrical factors were the dendritic stem diameter, varicosities, and size of peri-dendritic space limited by glial sheath wrapping. Varicosities increased the attenuation along homogeneous proximal dendrites by providing an increased current leak at the junction with the proximal dendritic section. The glial sheath wrapping a dendrite section promoted greater attenuation by increasing longitudinal resistance of the interstitial peri-dendritic space thus playing the insulating role. These decoupling effects were strengthened in the case of the dendritic stems with thinner diameters of and/or increased conductivity of the membrane. These micro-geometrical factors are biophysically realistic and predict electrical decoupling between somatic and dendritic compartments in MNNs.

7.
Hypertension ; 80(6): 1258-1273, 2023 06.
Article in English | MEDLINE | ID: mdl-37035922

ABSTRACT

BACKGROUND: Heart failure (HF) is a debilitating disease affecting >64 million people worldwide. In addition to impaired cardiovascular performance and associated systemic complications, most patients with HF suffer from depression and substantial cognitive decline. Although neuroinflammation and brain hypoperfusion occur in humans and rodents with HF, the underlying neuronal substrates, mechanisms, and their relative contribution to cognitive deficits in HF remains unknown. METHODS: To address this critical gap in our knowledge, we used a well-established HF rat model that mimics clinical outcomes observed in the human population, along with a multidisciplinary approach combining behavioral, electrophysiological, neuroanatomical, molecular and systemic physiological approaches. RESULTS: Our studies support neuroinflammation, hypoperfusion/hypoxia, and neuronal deficits in the hippocampus of HF rats, which correlated with the progression and severity of the disease. An increased expression of AT1aRs (Ang II [angiotensin II] receptor type 1a) in hippocampal microglia preceded the onset of neuroinflammation. Importantly, blockade of AT1Rs with a clinically used therapeutic drug (Losartan), and delivered in a clinically relevant manner, efficiently reversed neuroinflammatory end points (but not hypoxia ones), resulting in turn in improved cognitive performance in HF rats. Finally, we show than circulating Ang II can leak and access the hippocampal parenchyma in HF rats, constituting a possible source of Ang II initiating the neuroinflammatory signaling cascade in HF. CONCLUSIONS: In this study, we identified a neuronal substrate (hippocampus), a mechanism (Ang II-driven neuroinflammation) and a potential neuroprotective therapeutic target (AT1aRs) for the treatment of cognitive deficits in HF.


Subject(s)
Cognitive Dysfunction , Heart Failure , Rats , Humans , Animals , Angiotensin II/pharmacology , Neuroinflammatory Diseases , Heart Failure/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hippocampus
8.
J Neuroendocrinol ; 35(9): e13245, 2023 09.
Article in English | MEDLINE | ID: mdl-36880566

ABSTRACT

A map of central nervous system organization based on vascular networks provides a layer of organization distinct from familiar neural networks or connectomes. As a well-established example, the capillary networks of the pituitary portal system enable a route for small amounts of neurochemical signals to reach local targets by traveling along specialized pathways, thereby avoiding dilution in the systemic circulation. The first evidence of such a pathway in the brain came from anatomical studies identifying a portal pathway linking the hypothalamus and the pituitary gland. Almost a century later, we demonstrated a vascular portal pathway that joined the capillary beds of the suprachiasmatic nucleus and a circumventricular organ, the organum vasculosum of the lamina terminalis, in a mouse brain. For each of these portal pathways, the anatomical findings opened many new lines of inquiry, including the determination of the direction of flow of information, the identity of the signal that flowed along this pathway, and the function of the signals that linked the two regions. Here, we review landmark steps to these discoveries and highlight the experiments that reveal the significance of portal pathways and more generally, the implications of morphologically distinct nuclei sharing capillary beds.


Subject(s)
Neurons , Organum Vasculosum , Mice , Animals , Neurons/metabolism , Organum Vasculosum/physiology , Suprachiasmatic Nucleus/physiology , Hypothalamus/metabolism , Pituitary Gland
9.
Nat Commun ; 14(1): 1066, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828816

ABSTRACT

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Subject(s)
Neuralgia , Oxytocin , Rats , Male , Female , Animals , Oxytocin/metabolism , Periaqueductal Gray/physiology , Neurons/metabolism , Analgesics/pharmacology , Neuralgia/metabolism
10.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187537

ABSTRACT

Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknow. Using a well-established ischemic HF rat model, we demonstrate increased vessel-associated microglia (VAM) in HF rat hippocampi, which showed heightened expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to the perivascular space, along with increased expression of TNFa. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to the perivascular space, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.

11.
J Neuroendocrinol ; 34(12): e13217, 2022 12.
Article in English | MEDLINE | ID: mdl-36458331

ABSTRACT

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by hyperphagia, obesity, developmental delay and intellectual disability. Studies suggest dysfunctional signaling of the neuropeptide oxytocin as one of the key mechanisms in PWS, and administration of oxytocin via intranasal or systemic routes yielded promising results in both humans and mouse models. However, a detailed assessment of the oxytocin system in mouse models of PWS such as the Magel2-deficient Magel2tm1.Stw mouse, is lacking. In the present study, we performed an automated counting of oxytocin cells in the entire paraventricular nucleus of the hypothalamus of Magel2tm1.Stw and wild-type control mice and found a significant reduction in the caudal part, which represents the parvocellular subdivision. In addition, based on the recent discovery that some astrocytes express the oxytocin receptor (OTR), we performed detailed analysis of astrocyte numbers and morphology in various brain regions, and assessed expression levels of the astrocyte marker glial fibrillary acidic protein, which was significantly decreased in the hypothalamus, but not other brain regions in Magel2tm1.Stw mice. Finally, we analyzed the number of OTR-expressing astrocytes in various brain regions and found a significant reduction in the nucleus accumbens of Magel2tm1.Stw mice, as well as a sex-specific difference in the lateral septum. This study suggests a role for caudal paraventricular nucleus oxytocin neurons as well as OTR-expressing astrocytes in a mouse model of PWS, provides novel information about sex-specific expression of astrocytic OTRs, and presents several new brain regions containing OTR-expressing astrocytes in the mouse brain.


Subject(s)
Astrocytes , Hypothalamus , Neuropeptides , Oxytocin , Prader-Willi Syndrome , Animals , Female , Male , Mice , Astrocytes/metabolism , Disease Models, Animal , Hypothalamus/metabolism , Neuropeptides/metabolism , Oxytocin/metabolism , Prader-Willi Syndrome/metabolism , Receptors, Oxytocin/metabolism
12.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36198294

ABSTRACT

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Subject(s)
Astrocytes , Hypothalamus , Animals , Astrocytes/metabolism , Energy Metabolism/physiology , Glucose/metabolism , Glutamic Acid/metabolism , Hypothalamus/metabolism , Mice , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
13.
J Neuroendocrinol ; 34(7): e13166, 2022 07.
Article in English | MEDLINE | ID: mdl-35657290

ABSTRACT

Oxytocinergic actions within the hippocampal CA2 are important for neuromodulation, memory processing and social recognition. However, the source of the OTergic innervation, the cellular targets expressing the OT receptors (OTRs) and whether the PVN-to-CA2 OTergic system is altered during heart failure (HF), a condition recently associated with cognitive and mood decline, remains unknown. Using immunohistochemistry along with retrograde monosynaptic tracing, RNAscope and a novel OTR-Cre rat line, we show that the PVN (but not the supraoptic nucleus) is an important source of OTergic innervation to the CA2. These OTergic fibers were found in many instances in close apposition to OTR expressing cells within the CA2. Interestingly, while only a small proportion of neurons were found to express OTRs (~15%), this expression was much more abundant in CA2 astrocytes (~40%), an even higher proportion that was recently reported for astrocytes in the central amygdala. Using an established ischemic rat heart failure (HF) model, we found that HF resulted in robust changes in the PVN-to-CA2 OTergic system, both at the source and target levels. Within the PVN, we found an increased OT immunoreactivity, along with a diminished OTR expression in PVN neurons. Within the CA2 of HF rats, we observed a blunted OTergic innervation, along with a diminished OTR expression, which appeared to be restricted to CA2 astrocytes. Taken together, our studies highlight astrocytes as key cellular targets mediating OTergic PVN inputs to the CA2 hippocampal region. Moreover, they provide the first evidence for an altered PVN-to-CA2 OTergic system in HF rats, which could potentially contribute to previously reported cognitive and mood impairments in this animal model.


Subject(s)
Heart Failure , Receptors, Oxytocin , Animals , Astrocytes/metabolism , Heart Failure/metabolism , Hippocampus/metabolism , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Receptors, Oxytocin/metabolism
14.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R526-R534, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35319903

ABSTRACT

Angiotensin II (ANG II)-mediated sympathohumoral activation constitutes a pathophysiological mechanism in heart failure (HF). Although the hypothalamic paraventricular nucleus (PVN) is a major site mediating ANG II effects in HF, the precise mechanisms by which ANG II influences sympathohumoral outflow from the PVN remain unknown. ANG II activates the ubiquitous intracellular MAPK signaling cascades, and recent studies revealed a key role for ERK1/2 MAPK signaling in ANG II-mediated sympathoexcitation in HF rats. Importantly, ERK1/2 was reported to inhibit the transient outward potassium current (IA) in hippocampal neurons. Given that IA is a critical determinant of the PVN neuronal excitability, and that downregulation of IA in the brain has been reported in cardiovascular disease states, including HF, we investigated here whether ANG II modulates IA in PVN neurons via the MAPK-ERK pathway, and, whether these effects are altered in HF rats. Patch-clamp recordings from identified magnocellular neurosecretory neurons (MNNs) and presympathetic (PS) PVN neurons revealed that ANG II inhibited IA in both PVN neuronal types, both in sham and HF rats. Importantly, ANG II effects were blocked by inhibiting MAPK-ERK signaling as well as by inhibiting epidermal growth factor receptor (EGFR), a gateway to MAPK-ERK signaling. Although no differences in basal IA magnitude were found between sham and HF rats under normal conditions, MAPK-ERK blockade resulted in significantly larger IA in both PVN neuronal types in HF rats. Taken together, our studies show that ANG II-induced ERK1/2 activity inhibits IA, an effect expected to increase the excitability of presympathetic and neuroendocrine PVN neurons, contributing in turn to the neurohumoral overactivity that promotes progression of the HF syndrome.


Subject(s)
Heart Failure , Paraventricular Hypothalamic Nucleus , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , MAP Kinase Signaling System , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats
15.
Physiol Rep ; 10(6): e15226, 2022 03.
Article in English | MEDLINE | ID: mdl-35312181

ABSTRACT

Oxytocin is secreted into the periphery by magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei (SON and PVN) to trigger uterine contraction during birth and milk ejection during suckling. Peripheral oxytocin secretion is triggered by action potential firing, which is regulated by afferent input activity and by feedback from oxytocin secreted into the extracellular space from magnocellular neuron somata and dendrites. A prominent input to oxytocin neurons arises from proopiomelanocortin neurons of the hypothalamic arcuate nucleus that secrete an alpha-melanocyte-stimulating hormone (α-MSH), which inhibits oxytocin neuron firing in non-pregnant rats by increasing somato-dendritic oxytocin secretion. However, α-MSH inhibition of oxytocin neuron firing is attenuated in mid-pregnancy and somato-dendritic oxytocin becomes auto-excitatory in late-pregnancy and lactation. Therefore, we hypothesized that attenuated α-MSH inhibition of oxytocin neuron firing marks the beginning of a transition from inhibition to excitation to facilitate peripheral oxytocin secretion for parturition and lactation. Intra-SON microdialysis administration of α-MSH inhibited oxytocin neuron firing rate by 33 ± 9% in non-pregnant rats but increased oxytocin neuron firing rate by 37 ± 12% in late-pregnant rats and by 28 ± 10% in lactating rats. α-MSH-induced somato-dendritic oxytocin secretion measured ex vivo with oxytocin receptor-expressing "sniffer" cells, was of similar amplitude in PVN slices from non-pregnant and lactating rats but longer-lasting in slices from lactating rats. Hence, α-MSH inhibition of oxytocin neuron activity switches to excitation over pregnancy while somato-dendritic oxytocin secretion is maintained, which might enhance oxytocin neuron excitability to facilitate the increased peripheral secretion that is required for normal parturition and milk ejection.


Subject(s)
Oxytocin , Supraoptic Nucleus , Animals , Female , Lactation/physiology , Neurons/physiology , Paraventricular Hypothalamic Nucleus , Pregnancy , Rats , Supraoptic Nucleus/physiology , alpha-MSH/pharmacology
16.
STAR Protoc ; 3(1): 101160, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35199030

ABSTRACT

Here, we present a step-by-step protocol for three-dimensional reconstruction of astrocyte morphology, applied to the central amygdala oxytocin receptor-expressing astrocytes. This includes RNAse-free perfusion, combination of RNAscope and immunohistochemistry, and confocal imaging. This protocol provides detailed information about tissue handling and a comprehensive description of the RNAScope technique to label rat and mouse oxytocin receptor mRNA. We also describe three-dimensional reconstruction that allows the assessment of more than 70 different cellular parameters, powerful for studying astrocyte morphology and astrocyte-astrocyte interactions. For complete details on the use and execution of this protocol, please refer to Wahis et al. (2021) and Althammer et al. (2020).


Subject(s)
Astrocytes , Central Amygdaloid Nucleus , Animals , Imaging, Three-Dimensional/methods , Immunohistochemistry , Mice , Rats , Receptors, Oxytocin/genetics
17.
Cell Rep ; 37(5): 109925, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34731601

ABSTRACT

Neurovascular coupling (NVC), the process that links neuronal activity to cerebral blood flow changes, has been mainly studied in superficial brain areas, namely the neocortex. Whether the conventional, rapid, and spatially restricted NVC response can be generalized to deeper and functionally diverse brain regions remains unknown. Implementing an approach for in vivo two-photon imaging from the ventral surface of the brain, we show that a systemic homeostatic challenge, acute salt loading, progressively increases hypothalamic vasopressin (VP) neuronal firing and evokes a vasoconstriction that reduces local blood flow. Vasoconstrictions are blocked by topical application of a VP receptor antagonist or tetrodotoxin, supporting mediation by activity-dependent, dendritically released VP. Salt-induced inverse NVC results in a local hypoxic microenvironment, which evokes positive feedback excitation of VP neurons. Our results reveal a physiological mechanism by which inverse NVC responses regulate systemic homeostasis, further supporting the notion of brain heterogeneity in NVC responses.


Subject(s)
Cerebrovascular Circulation , Dendrites/metabolism , Neurovascular Coupling , Supraoptic Nucleus/blood supply , Vasoconstriction , Vasopressins/metabolism , Action Potentials , Animals , Blood Flow Velocity , Cell Hypoxia , Cellular Microenvironment , Female , Homeostasis , Infusions, Intravenous , Male , Microscopy, Fluorescence, Multiphoton , Rats, Transgenic , Rats, Wistar , Saline Solution, Hypertonic/administration & dosage , Time Factors , Vasopressins/genetics
18.
Pharmacol Res ; 174: 105877, 2021 12.
Article in English | MEDLINE | ID: mdl-34610452

ABSTRACT

Angiotensin II (AngII) is implicated in neuroinflammation, blood-brain barrier (BBB) disruption, and autonomic dysfunction in hypertension. We have previously shown that exogenous AngII stimulates Toll-like receptor 4 (TLR4) via AngII type 1 receptor (AT1R), inducing activation of hypothalamic microglia ex vivo, and that AngII-AT1R signaling is necessary for the loss of BBB integrity in spontaneously hypertensive rats (SHRs). Herein, we hypothesized that microglial TLR4 and AT1R signaling interactions represent a crucial mechanistic link between AngII-mediated neuroinflammation and BBB disruption, thereby contributing to sympathoexcitation in SHRs. Male SHRs were treated with TAK-242 (TLR4 inhibitor; 2 weeks), Losartan (AT1R inhibitor; 4 weeks), or vehicle, and age-matched to control Wistar Kyoto rats (WKYs). TLR4 and AT1R inhibitions normalized increased TLR4, interleukin-6, and tumor necrosis factor-α protein densities in SHR cardioregulatory nuclei (hypothalamic paraventricular nucleus [PVN], rostral ventrolateral medulla [RVLM], and nucleus tractus solitarius [NTS]), and abolished enhanced microglial activation. PVN, RVLM, and NTS BBB permeability analyses revealed complete restoration after TAK-242 treatment, whereas SHRs presented with elevated dye leakage. Mean arterial pressure was normalized in Losartan-treated SHRs, and attenuated with TLR4 inhibition. In conscious assessments, TLR4 blockade rescued SHR baroreflex sensitivity to vasoactive drugs, and reduced the SHR pressor response to ganglionic blockade to normal levels. These data suggest that TLR4 activation plays a substantial role in mediating a feed-forward pro-hypertensive cycle involving BBB disruption, neuroinflammation, and autonomic dysfunction, and that TLR4-specific therapeutic interventions may represent viable alternatives in the treatment of hypertension.


Subject(s)
Brain/metabolism , Hypertension , Neuroinflammatory Diseases , Receptor, Angiotensin, Type 1 , Toll-Like Receptor 4 , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Arterial Pressure , Baroreflex , Heart Rate , Hypertension/metabolism , Hypertension/physiopathology , Losartan/pharmacology , Male , Microglia , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/physiopathology , Permeability , Rats, Inbred SHR , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/physiology , Sulfonamides/pharmacology , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/physiology
19.
Behav Brain Res ; 414: 113452, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34274373

ABSTRACT

Chronic heart failure (HF) is a serious disorder that afflicts more than 26 million patients worldwide. HF is comorbid with depression, anxiety and memory deficits that have serious implications for quality of life and self-care in patients who have HF. Still, there are few studies that have assessed the effects of severely reduced ejection fraction (≤40 %) on cognition in non-human animal models. Moreover, limited information is available regarding the effects of HF on genetic markers of synaptic plasticity in brain areas critical for memory and mood regulation. We induced HF in male rats and tested mood and anxiety (sucrose preference and elevated plus maze) and memory (spontaneous alternation and inhibitory avoidance) and measured the simultaneous expression of 84 synaptic plasticity-associated genes in dorsal (DH) and ventral hippocampus (VH), basolateral (BLA) and central amygdala (CeA) and prefrontal cortex (PFC). We also included the hypothalamic paraventricular nucleus (PVN), which is implicated in neurohumoral activation in HF. Our results show that rats with severely reduced ejection fraction recapitulate behavioral symptoms seen in patients with chronic HF including, increased anxiety and impaired memory in both tasks. HF also downregulated several synaptic-plasticity genes in PFC and PVN, moderate decreases in DH and CeA and minimal effects in BLA and VH. Collectively, these findings identify candidate brain areas and molecular mechanisms underlying HF-induced disturbances in mood and memory.


Subject(s)
Amygdala/metabolism , Behavioral Symptoms/etiology , Gene Expression , Heart Failure/complications , Hippocampus/metabolism , Memory Disorders/etiology , Neuronal Plasticity/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Animals , Anxiety/etiology , Behavior, Animal/physiology , Disease Models, Animal , Down-Regulation , Male , Rats , Rats, Wistar
20.
Eur J Neurol ; 28(11): 3640-3649, 2021 11.
Article in English | MEDLINE | ID: mdl-34152065

ABSTRACT

BACKGROUND AND PURPOSE: Damage to the insula results in cardiovascular complications. In rats, activation of N-methyl-d-aspartate receptors (NMDARs) in the intermediate region of the posterior insular cortex (iIC) results in sympathoexcitation, tachycardia and arterial pressure increases. Similarly, focal experimental hemorrhage at the iIC results in a marked sympathetic-mediated increase in baseline heart rate. The dorsomedial hypothalamic region (DMH) is critical for the integration of sympathetic-mediated tachycardic responses. Here, whether responses evoked from the iIC are dependent on a synaptic relay in the DMH was evaluated. METHODS: Wistar rats were prepared for injections into the iIC and DMH. Anatomical (tracing combined with immunofluorescence) and functional experiments (cardiovascular and sympathetic recordings) were performed. RESULTS: The iIC sends dense projections to the DMH. Approximately 50% of iIC neurons projecting to the DMH express NMDARs, NR1 subunit. Blockade of glutamatergic receptors in the DMH abolishes the cardiovascular and autonomic responses evoked by the activation of NMDARs in the iIC (change in mean arterial pressure 7 ± 1 vs. 1 ± 1 mmHg after DMH blockade; change in heart rate 28 ± 3 vs. 0 ± 3 bpm after DMH blockade; change in renal sympathetic nerve activity 23% ± 1% vs. -1% ± 4% after DMH blockade). Experimental hemorrhage at the iIC resulted in a marked tachycardia (change 89 ± 14 bpm) that was attenuated by 65% ± 5% (p = 0.0009) after glutamatergic blockade at the DMH. CONCLUSIONS: The iIC-induced tachycardia is largely dependent upon a glutamatergic relay in the DMH. Our study reveals the presence of an excitatory glutamatergic pathway from the iIC to the DMH that may be involved in the cardiovascular alterations observed after insular stroke.


Subject(s)
Dorsomedial Hypothalamic Nucleus , Stroke , Animals , Blood Pressure , Heart Rate , Humans , Hypothalamus , Rats , Rats, Wistar , Synaptic Transmission , Tachycardia/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...