Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pept Sci (Hoboken) ; 116(2)2024 Mar.
Article in English | MEDLINE | ID: mdl-38882551

ABSTRACT

Coiled coils are one of most common protein quaternary structures and represent the best understood relationship between amino acid sequence and protein conformation. Whereas the roles of residues at the canonical heptad positions the a, d, e, and g are understood in precise detail, conventional approaches often assume that the solvent-exposed b-, c-, and f-positions can be varied broadly for application-specific purposes with minimal consequences. However, a growing body of evidence suggests that interactions among these b, c, and f residues can contribute substantially to coiled-coil conformational stability. In the trimeric coiled coil described here, we find that b-position Glu10 engages in a stabilizing long-range synergistic interaction with c-position Lys18 (ΔΔΔGf = -0.65 ± 0.02 kcal/mol). This favorable interaction depends strongly on the presence of two nearby f-position residues: Lys 7 and Tyr14. Extensive mutational analysis of these residues in the presence of added salt vs. denaturant suggests that this long-range synergistic interaction is primarily electrostatic in origin, but also depends on the precise location and acidity of a side-chain hydrogen-bond donor within f-position Tyr14.

2.
Sci Rep ; 13(1): 15493, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726313

ABSTRACT

Various approaches have used neural networks as probabilistic models for the design of protein sequences. These "inverse folding" models employ different objective functions, which come with trade-offs that have not been assessed in detail before. This study introduces probabilistic definitions of protein stability and conformational specificity and demonstrates the relationship between these chemical properties and the [Formula: see text] Boltzmann probability objective. This links the Boltzmann probability objective function to experimentally verifiable outcomes. We propose a novel sequence decoding algorithm, referred to as "BayesDesign", that leverages Bayes' Rule to maximize the [Formula: see text] objective instead of the [Formula: see text] objective common in inverse folding models. The efficacy of BayesDesign is evaluated in the context of two protein model systems, the NanoLuc enzyme and the WW structural motif. Both BayesDesign and the baseline ProteinMPNN algorithm increase the thermostability of NanoLuc and increase the conformational specificity of WW. The possible sources of error in the model are analyzed.


Subject(s)
Algorithms , Bayes Theorem , Protein Stability , Amino Acid Sequence , Likelihood Functions
3.
Biochemistry ; 61(5): 319-326, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35129961

ABSTRACT

Coiled coils are among the most abundant tertiary and quaternary structures found in proteins. A growing body of evidence suggests that long-range synergistic interactions among solvent-exposed residues can contribute substantially to coiled-coil conformational stability, but our understanding of the key sequence and structural prerequisites of this effect is still developing. Here, we show that the strength of synergistic interaction involving a b-position Glu (i), an f-position Tyr (i + 4), and a c-position Lys (i + 8) depends on the identity of the f-position residue, the length and stability of the coiled coil, and its oligomerization stoichiometry/surface accessibility. Combined with previous observations, these results map out predictable sequence- and structure-based criteria for enhancing coiled-coil stability by up to -0.58 kcal/mol per monomer (or -2.32 kcal/mol per coiled-coil tetramer). Our observations expand the available tools for enhancing coiled coil stability by sequence variation at solvent-exposed b-, c-, and f-positions and suggest the need to exercise care in the choice of substitutions at these positions for application-specific purposes.


Subject(s)
Protein Structure, Secondary , Amino Acid Sequence , Circular Dichroism , Protein Denaturation , Solvents
4.
Biochemistry ; 59(17): 1672-1679, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32270676

ABSTRACT

Here we show that a solvent-exposed f-position (i.e., residue 14) within a well-characterized trimeric helix bundle can facilitate a stabilizing long-range synergistic interaction involving b-position Glu10 (i.e., i - 4 relative to residue 14) and c-position Lys18 (i.e., i + 4), depending the identity of residue 14. The extent of stabilization associated with the Glu10-Lys18 pair depends primarily on the presence of a side-chain hydrogen-bond donor at residue 14; the nonpolar or hydrophobic character of residue 14 plays a smaller but still significant role. Crystal structures and molecular dynamics simulations indicate that Glu10 and Lys18 do not interact directly with each other but suggest the possibility that the proximity of residue 14 with Lys18 allows Glu10 to interact favorably with nearby Lys7. Subsequent thermodynamic experiments confirm the important role of Lys7 in the large synergistic stabilization associated with the Glu10-Lys18 pair. Our results highlight the exquisite complexity and surprising long-range synergistic interactions among b-, c-, and f-position residues within helix bundles, suggesting new possibilities for engineering hyperstable helix bundles and emphasizing the need to consider carefully the impact of substitutions at these positions for application-specific purposes.


Subject(s)
Peptides/chemistry , Protein Multimerization , Solvents/chemistry , Amino Acid Sequence , Models, Molecular , Protein Conformation, alpha-Helical , Protein Folding , Thermodynamics , Transition Temperature
5.
J Org Chem ; 85(3): 1725-1730, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31749365

ABSTRACT

Many proteins have one or more surface-exposed patches of nonpolar residues; our observations here suggest that PEGylation near such locations might be a useful strategy for increasing protein conformational stability. Specifically, we show that conjugating a PEG-azide to a propargyloxyphenylalanine via the copper(I)-catalyzed azide-alkyne cycloaddition can increase the conformational stability of the WW domain due to a favorable synergistic effect that depends on the hydrophobicity of a nearby patch of nonpolar surface residues.


Subject(s)
Polyethylene Glycols , Proteins , Alkynes , Azides , Copper , Protein Conformation , Protein Stability , WW Domains
6.
Org Biomol Chem ; 16(46): 8933-8939, 2018 11 28.
Article in English | MEDLINE | ID: mdl-30444518

ABSTRACT

Hydrocarbon stapling and PEGylation are distinct strategies for enhancing the conformational stability and/or pharmacokinetic properties of peptide and protein drugs. Here we combine these approaches by incorporating asparagine-linked O-allyl PEG oligomers at two positions within the ß-sheet protein WW, followed by stapling of the PEGs via olefin metathesis. The impact of stapling two sites that are close in primary sequence is small relative to the impact of PEGylation alone and depends strongly on PEG length. In contrast, stapling of two PEGs that are far apart in primary sequence but close in tertiary structure provides substantially more stabilization, derived mostly from an entropic effect. Comparison of PEGylation + stapling vs. alkylation + stapling at the same positions in WW reveals that both approaches provide similar overall levels of conformational stability.


Subject(s)
Asparagine/analogs & derivatives , Entropy , Peptides/chemistry , Polyethylene Glycols/chemistry , Proteins/chemistry , Alkenes/chemistry , Models, Molecular , Protein Conformation , Protein Conformation, beta-Strand , Protein Stability , WW Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...