Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiology ; 294(1): 149-157, 2020 01.
Article in English | MEDLINE | ID: mdl-31714192

ABSTRACT

Background MRI performed with echo-planar imaging (EPI) sequences is sensitive to susceptibility artifacts in the presence of metallic objects, which presents a substantial barrier for performing functional MRI and diffusion tensor imaging (DTI) in patients with metallic orthodontic material and other head implants. Purpose To evaluate the ability to reduce susceptibility artifacts in healthy human participants wearing metallic orthodontic braces for two alternative approaches: T2-prepared functional MRI and diffusion-prepared DTI with three-dimensional fast gradient-echo readout. Materials and Methods In this prospective study conducted from February to September 2018, T2-prepared functional MRI and diffusion-prepared DTI were performed in healthy human participants. Removable dental braces with bonding trays were used so that MRI could be performed with braces and without braces in the same participants. Results were evaluated in regions with strong (EPI dropout regions for functional MRI and the inferior fronto-occipital fasciculus for DTI) and minimal (motor cortex for functional MRI and the posterior limb of internal capsule for DTI) susceptibility artifacts. Signal-to-noise ratio (SNR), contrast-to-noise ratio for functional MRI, apparent diffusion coefficient and fractional anisotropy for DTI, and degree of distortion (quantified with the Jaccard index, which measures the similarity of geometric shapes) were compared in regions with strong or minimal susceptibility effects between the current standard EPI sequences and the proposed alternatives by using paired t test. Results Six participants were evaluated (mean age ± standard deviation, 40 years ± 6; three women). In brain regions with strong susceptibility effects from the metallic braces, T2-prepared functional MRI showed significantly higher SNR (37.8 ± 2.4 vs 15.5 ± 5.3; P < .001) and contrast-to-noise ratio (0.83 ± 0.16 vs 0.29 ± 0.10; P < .001), whereas diffusion-prepared DTI showed higher SNR (5.8 ± 1.5 vs 3.8 ± 0.7; P = .03) than did conventional EPI methods. Apparent diffusion coefficient and fractional anisotropy were consistent with the literature. Geometric distortion was substantially reduced throughout the brain with the proposed methods (significantly higher Jaccard index, 0.95 ± 0.12 vs 0.81 ± 0.61; P < .001). Conclusion T2-prepared functional MRI and diffusion-prepared diffusion tensor imaging can acquire functional and diffusion MRI, respectively, in healthy human participants wearing metallic dental braces with less susceptibility artifacts and geometric distortion than with conventional echo-planar imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Dietrich in this issue.


Subject(s)
Artifacts , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Orthodontic Brackets , Adult , Diffusion Tensor Imaging/methods , Female , Humans , Male , Prospective Studies , Reproducibility of Results
2.
Micromachines (Basel) ; 10(11)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731737

ABSTRACT

Rapid and precise manipulation of magnetic beads on the nano and micro scales is essential in many biosensing applications, such as separating target molecules from background molecules and detecting specific proteins and DNA sequences in plasma. Accurately moving magnetic beads back and forth requires at least two adjustable magnetic field gradients. Unlike permanent magnets, electromagnets are easy to design and can produce strong and adjustable magnetic field gradients without mechanical motion, making them desirable for use in robust and safe medical devices. However, using multiple magnetic field sources to manipulate magnetic beads presents several challenges, including overlapping magnetic fields, added bulk, increased cost, and reduced durability. Here, we provide a thorough analysis, including analytical calculations, numerical simulations, and experimental measurements, of using two electromagnets to manipulate magnetic beads inside a miniature glass cell. We analyze and experimentally demonstrate different aspects of the electromagnets' design, such as their mutual influence, the advantages and disadvantages of different pole tip geometries, and the correlation between the electromagnets' positions and the beads' aggregation during movement. Finally, we have devised a protocol to maximize the magnetic forces acting on magnetic beads in a two-electromagnet setup while minimizing the electromagnets' size. We used two such electromagnets in a small footprint magnetic modulation biosensing system and detected as little as 13 ng/L of recombinant Zika virus antibodies, which enables detection of Zika IgM antibodies as early as 5 days and as late as 180 days post symptoms onset, significantly extending the number of days that the antibodies are detectable.

SELECTION OF CITATIONS
SEARCH DETAIL
...