Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 89(26): 266801, 2002 Dec 23.
Article in English | MEDLINE | ID: mdl-12484846

ABSTRACT

We observe the transition from a spin-unpolarized to a polarized nu=2/3 fractional quantum Hall state at low currents (<5 nA), recently described in terms of quantum Hall ferromagnetism, versus density and parallel magnetic field. At larger currents the time and current dependent huge longitudinal resistance (HLR) is always initiated at the transition. Transport in the HLR regime is linear and the amount of current-induced nuclear polarization in the HLR is comparable to the thermal nuclear polarization at approximately 20 mK and 10 T. A current-induced disorder in the nuclear polarization is speculated to cause the enhanced resistance in the HLR regime.

2.
Science ; 291(5503): 451-3, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-11161192

ABSTRACT

We demonstrate coupling and entangling of quantum states in a pair of vertically aligned, self-assembled quantum dots by studying the emission of an interacting electron-hole pair (exciton) in a single dot molecule as a function of the separation between the dots. An interaction-induced energy splitting of the exciton is observed that exceeds 30 millielectron volts for a dot layer separation of 4 nanometers. The results are interpreted by mapping the tunneling of a particle in a double dot to the problem of a single spin. The electron-hole complex is shown to be equivalent to entangled states of two interacting spins.

3.
Nature ; 405(6789): 923-6, 2000 Jun 22.
Article in English | MEDLINE | ID: mdl-10879527

ABSTRACT

Quantum dots or 'artificial atoms' are of fundamental and technological interest--for example, quantum dots may form the basis of new generations of lasers. The emission in quantum-dot lasers originates from the recombination of excitonic complexes, so it is important to understand the dot's internal electronic structure (and of fundamental interest to compare this to real atomic structure). Here we investigate artificial electronic structure by injecting optically a controlled number of electrons and holes into an isolated single quantum dot. The charge carriers form complexes that are artificial analogues of hydrogen, helium, lithium, beryllium, boron and carbon excitonic atoms. We observe that electrons and holes occupy the confined electronic shells in characteristic numbers according to the Pauli exclusion principle. In each degenerate shell, collective condensation of the electrons and holes into coherent many-exciton ground states takes place; this phenomenon results from hidden symmetries (the analogue of Hund's rules for real atoms) in the energy function that describes the multi-particle system. Breaking of the hidden symmetries leads to unusual quantum interferences in emission involving excited states.

SELECTION OF CITATIONS
SEARCH DETAIL
...