Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(20): 5366-5375, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38735065

ABSTRACT

Dynamic nuclear polarization (DNP) utilizing narrow-line electron spin clusters (ESCs) to achieve nuclear spin resonance matching (ESC-DNP) by microwave irradiation is a promising way to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. Here we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for 1H NMR at 7 T, supported by experimental data and quantum mechanical simulations. A slow-relaxing (T1e ≈ 1 ms) 4-ESC is found to require at least two electron spin pairs at <8 Å e-e spin distance to yield 1H ESC-DNP enhancement, while squeezing the rest of the e-e spin distances to <12 Å results in optimal 1H ESC-DNP enhancements. Fast-relaxing ESCs (T1e ≈ 10 µs) are found to require a weakly coupled narrow-line radical (sensitizer) to extract polarization from the ESC. These results provide design principles for achieving a power-efficient DNP at high field via ESC-DNP.

2.
J Am Chem Soc ; 145(50): 27576-27586, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38054954

ABSTRACT

Dissolution dynamic nuclear polarization (dDNP) is a method of choice for preparing hyperpolarized 13C metabolites such as 1-13C-pyruvate used for in vivo applications, including the real-time monitoring of cancer cell metabolism in human patients. The approach consists of transferring the high polarization of electron spins to nuclear spins via microwave irradiation at low temperatures (1.0-1.5 K) and moderate magnetic fields (3.3-7 T). The solid sample is then dissolved and transferred to an NMR spectrometer or MRI scanner for detection in the liquid state. Common dDNP protocols use direct hyperpolarization of 13C spins reaching polarizations of >50% in ∼1-2 h. Alternatively, 1H spins are polarized before transferring their polarization to 13C spins using cross-polarization, reaching polarization levels similar to those of direct DNP in only ∼20 min. However, it relies on more complex instrumentation, requiring highly skilled personnel. Here, we explore an alternative route using 1H dDNP followed by inline adiabatic magnetic field inversion in the liquid state during the transfer. 1H polarizations of >70% in the solid state are obtained in ∼5-10 min. As the hyperpolarized sample travels from the dDNP polarizer to the NMR spectrometer, it goes through a field inversion chamber, which causes the 1H → 13C polarization transfer. This transfer is made possible by the J-coupling between the heteronuclei, which mixes the Zeeman states at zero-field and causes an antilevel crossing. We report liquid-state 13C polarization up to ∼17% for 3-13C-pyruvate and 13C-formate. The instrumentation needed to perform this experiment in addition to a conventional dDNP polarizer is simple and readily assembled.

3.
Anal Chem ; 95(2): 720-729, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36563171

ABSTRACT

Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.


Subject(s)
Magnetic Resonance Imaging , Solubility , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods
4.
Magn Reson (Gott) ; 4(1): 87-109, 2023.
Article in English | MEDLINE | ID: mdl-38650894

ABSTRACT

Simulating NMR experiments may appear mysterious and even daunting for those who are new to the field. Yet, broken down into pieces, the process may turn out to be easier than expected. Quite the opposite, it is in fact a powerful and playful means to get insights into the spin dynamics of NMR experiments. In this tutorial paper, we show step by step how some NMR experiments can be simulated, assuming as little prior knowledge from the reader as possible. We focus on the case of NMR at zero and ultralow fields, an emerging modality of NMR in which the spin dynamics are dominated by spin-spin interactions rather than spin-field interactions, as is usually the case with conventional high-field NMR. We first show how to simulate spectra numerically. In a second step, we detail an approach to construct an eigenbasis for systems of spin-1/2 nuclei at zero field. We then use it to interpret the numerical simulations.

5.
Phys Chem Chem Phys ; 24(10): 5956-5964, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35195621

ABSTRACT

Typical magnetic resonance experiments are routinely limited by weak signal responses. In some cases, the low intrinsic sensitivity can be alleviated by the implementation of hyperpolarization technologies. Dissolution-dynamic nuclear polarization offers a means of hyperpolarizing small molecules. Hyperpolarized water is employed in several dynamic nuclear polarization studies, and hence accurate and rapid quantification of the 1H polarization level is of utmost importance. The solid-state nuclear magnetic resonance spectrum of water acquired under dissolution-dynamic nuclear polarization conditions has revealed lineshapes which become asymmetric at high levels of 1H polarization, which is an interesting fundamental problem in itself, but also complicates data interpretation and can prevent correct estimations of polarization levels achieved. In previous studies, attempts to simulate the 1H spectral lineshape of water as a function of the 1H polarization led to significant disagreement with the experimental results. Here we propose and demonstrate that such simulations, and therefore polarization quantification, can be implemented accurately, in particular by taking into account the detector dead time during 1H signal acquisition that can lead to severe spectral distortions. Based on these findings, we employed an echo-based radiofrequency pulse sequence to achieve distortion-free 1H spectra of hyperpolarized water, and adequate simulations of these echo-based spectra were implemented to extract the absolute 1H polarization level from the hyperpolarized water signal only, thus alleviating the need for lengthy and insensitive measurements of thermal equilibrium signals.


Subject(s)
Ice , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Water
6.
Magn Reson (Gott) ; 3(2): 183-202, 2022.
Article in English | MEDLINE | ID: mdl-37904870

ABSTRACT

NMR-based analysis of metabolite mixtures provides crucial information on biological systems but mostly relies on 1D 1H experiments for maximizing sensitivity. However, strong peak overlap of 1H spectra often is a limitation for the analysis of inherently complex biological mixtures. Dissolution dynamic nuclear polarization (d-DNP) improves NMR sensitivity by several orders of magnitude, which enables 13C NMR-based analysis of metabolites at natural abundance. We have recently demonstrated the successful introduction of d-DNP into a full untargeted metabolomics workflow applied to the study of plant metabolism. Here we describe the systematic optimization of d-DNP experimental settings for experiments at natural 13C abundance and show how the resolution, sensitivity, and ultimately the number of detectable signals improve as a result. We have systematically optimized the parameters involved (in a semi-automated prototype d-DNP system, from sample preparation to signal detection, aiming at providing an optimization guide for potential users of such a system, who may not be experts in instrumental development). The optimization procedure makes it possible to detect previously inaccessible protonated 13C signals of metabolites at natural abundance with at least 4 times improved line shape and a high repeatability compared to a previously reported d-DNP-enhanced untargeted metabolomic study. This extends the application scope of hyperpolarized 13C NMR at natural abundance and paves the way to a more general use of DNP-hyperpolarized NMR in metabolomics studies.

7.
Prog Nucl Magn Reson Spectrosc ; 126-127: 59-100, 2021.
Article in English | MEDLINE | ID: mdl-34852925

ABSTRACT

This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.


Subject(s)
Magnetic Resonance Spectroscopy , Solubility
8.
Solid State Nucl Magn Reson ; 116: 101762, 2021 12.
Article in English | MEDLINE | ID: mdl-34823210

ABSTRACT

A strategy of dipolar order mediated nuclear spin polarization transfer has recently been combined with dissolution-dynamic nuclear polarization (dDNP) and improved by employing optimized shaped radiofrequency pulses and suitable molecular modifications. In the context of dDNP experiments, this offers a promising means of transferring polarization from high-gamma 1H spins to insensitive 13C spins with lower peak power and lower energy compared with state-of-the-art cross-polarization schemes. The role of local molecular groups and the glassing matrix protonation level are both postulated to play a key role in the polarization transfer pathway via an intermediary reservoir of dipolar spin order. To gain appreciation of the mechanisms involved in the dipolar order mediated polarization transfer under dDNP conditions, we investigate herein the influence of the pivotal characteristics of the sample makeup: (i) revising the protonation level for the constituents of the DNP glass; and (ii) utilizing deuterated molecular derivatives. Experimental demonstrations are presented for the case of [1-13C]sodium acetate. We find that the proton sample molarity has a large impact on both the optimal parameters and the performance of the dipolar order mediated cross-polarization sequence, with the 13C signal build-up time drastically shortened in the case of high solvent protonation levels. In the case of a deuterated molecular derivative, we observe that the nearby 2H substituted methyl group is deleterious to the 1H→13C transfer phenomenon (particularly at low levels of sample protonation). Overall, increased solvent protonation makes the dipolar order governed polarization transfer significantly faster and more efficient. This study sheds light on the influential sample formulation traits which govern the dipolar order-controlled transfer of polarization and indicates that the polarization transfer efficiencies of deuterated molecules can be boosted and reach high performances simply by adequate solvent protonation.


Subject(s)
Protons , Radio Waves , Magnetic Resonance Spectroscopy , Solubility , Solvents
9.
Nat Commun ; 12(1): 4695, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34349114

ABSTRACT

Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) has enabled promising applications in spectroscopy and imaging, but remains poorly widespread due to experimental complexity. Broad democratization of dDNP could be realized by remote preparation and distribution of hyperpolarized samples from dedicated facilities. Here we show the synthesis of hyperpolarizing polymers (HYPOPs) that can generate radical- and contaminant-free hyperpolarized samples within minutes with lifetimes exceeding hours in the solid state. HYPOPs feature tunable macroporous porosity, with porous volumes up to 80% and concentration of nitroxide radicals grafted in the bulk matrix up to 285 µmol g-1. Analytes can be efficiently impregnated as aqueous/alcoholic solutions and hyperpolarized up to P(13C) = 25% within 8 min, through the combination of 1H spin diffusion and 1H → 13C cross polarization. Solutions of 13C-analytes of biological interest hyperpolarized in HYPOPs display a very long solid-state 13C relaxation times of 5.7 h at 3.8 K, thus prefiguring transportation over long distances.

10.
Sci Adv ; 7(18)2021 Apr.
Article in English | MEDLINE | ID: mdl-33931450

ABSTRACT

Dynamic nuclear polarization (DNP) is a widely used tool for overcoming the low intrinsic sensitivity of nuclear magnetic resonance spectroscopy and imaging. Its practical applicability is typically bounded, however, by the so-called "spin diffusion barrier," which relates to the poor efficiency of polarization transfer from highly polarized nuclei close to paramagnetic centers to bulk nuclei. A quantitative assessment of this barrier has been hindered so far by the lack of general methods for studying nuclear polarization flow in the vicinity of paramagnetic centers. Here, we fill this gap and introduce a general set of experiments based on microwave gating that are readily implemented. We demonstrate the versatility of our approach in experiments conducted between 1.2 and 4.2 K in static mode and at 100 K under magic angle spinning (MAS)-conditions typical for dissolution DNP and MAS-DNP-and directly observe the marked dependence of polarization flow on temperature.

11.
Phys Chem Chem Phys ; 23(15): 9457-9465, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885108

ABSTRACT

We have recently demonstrated the use of contactless radiofrequency pulse sequences under dissolution-dynamic nuclear polarization conditions as an attractive way of transferring polarization from sensitive 1H spins to insensitive 13C spins with low peak radiofrequency pulse powers and energies via a reservoir of dipolar order. However, many factors remain to be investigated and optimized to enable the full potential of this polarization transfer process. We demonstrate herein the optimization of several key factors by: (i) implementing more efficient shaped radiofrequency pulses; (ii) adapting 13C spin labelling; and (iii) avoiding methyl group relaxation sinks. Experimental demonstrations are presented for the case of [1-13C]sodium acetate and other relevant molecular candidates. By employing the range of approaches set out above, polarization transfer using the dipolar order mediated cross-polarization radiofrequency pulse sequence is improved by factors approaching ∼1.65 compared with previous results. Dipolar order mediated 1H→13C polarization transfer efficiencies reaching ∼76% were achieved using significantly reduced peak radiofrequency pulse powers relative to the performance of highly sophisticated state-of-the-art cross-polarization methods, indicating 13C nuclear spin polarization levels on the order of ∼32.1% after 10 minutes of 1H DNP. The approach does not require extensive pulse sequence optimization procedures and can easily accommodate high concentrations of 13C-labelled molecules.

12.
Magn Reson (Gott) ; 2(2): 643-652, 2021.
Article in English | MEDLINE | ID: mdl-37905218

ABSTRACT

Dissolution dynamic nuclear polarization is used to prepare nuclear spin polarizations approaching unity. At present, 1H polarization quantification in the solid state remains fastidious due to the requirement of measuring thermal equilibrium signals. Line shape polarimetry of solid-state nuclear magnetic resonance spectra is used to determine several useful properties regarding the spin system under investigation. In the case of highly polarized nuclear spins, such as those prepared under the conditions of dissolution dynamic nuclear polarization experiments, the absolute polarization of a particular isotopic species within the sample may be directly inferred from the characteristics of the corresponding resonance line shape. In situations where direct measurements of polarization are complicated by deleterious phenomena, indirect estimates of polarization using coupled heteronuclear spins prove informative. We present a simple analysis of the 13C spectral line shape of [2-13C]sodium acetate based on the normalized deviation of the centre of gravity of the 13C peaks, which can be used to indirectly evaluate the proton polarization of the methyl group moiety and very likely the entire sample in the case of rapid and homogeneous 1H-1H spin diffusion. For the case of positive microwave irradiation, 1H polarization was found to increase with an increasing normalized centre of gravity deviation. These results suggest that, as a dopant, [2-13C]sodium acetate could be used to indirectly gauge 1H polarizations in standard sample formulations, which is potentially advantageous for (i) samples polarized in commercial dissolution dynamic nuclear polarization devices that lack 1H radiofrequency hardware, (ii) measurements that are deleteriously influenced by radiation damping or complicated by the presence of large background signals and (iii) situations where the acquisition of a thermal equilibrium spectrum is not feasible.

SELECTION OF CITATIONS
SEARCH DETAIL
...