Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Anal Chem ; 88(10): 5137-44, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27108566

ABSTRACT

The search for complex organic molecules in extraterrestrial environments, including important biomolecules such as amino and fatty acids, will require a space compatible sample handling system to enable their detection by gas chromatography-mass spectrometry (GC-MS). For the future Mars exploratory mission Exomars 2018 aimed at organic molecules detection, a dedicated laboratory pilot, called Device for Pretreatment of Sample (DPS), reproducing representative space operating conditions has been developed. After its optimization, it aimed at validating under development protocols and interpreting forthcoming in situ resulting data. The DPS, dedicated to organic compounds' analysis, is discussed in terms of its technical features. The derivatization is carried out on a 50-100 mg mineral sample in a 4 mL reactor coupled with a GC-MS injector to simulate on line in situ derivatization-volatilization-transfer steps. Three derivatization reactions have been carried out with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) as silylating reagent, N,N-dimethylformamide dimethylacetal (DMF-DMA) and tetramethylammonium hydroxide (TMAH) as methylating agents. The performances are illustrated by comparison of conventional and in situ silylation, developed for space research applications, using terrestrial mineral matrix and Mars analog materials enriched with 25 nmol of each targeted organic molecule. The work presented in this rationale has established that the use of derivatization reactions widens the scope of targeted molecules but also clearly points out mineral matrix effect. Decreasing mineral influence on pretreatment will be the next scientific challenge in in situ analysis.

2.
J Chromatogr A ; 1368: 211-6, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25441355

ABSTRACT

With the European Space Agency's Rosetta space mission to comet 67P/Churyumov-Gerasimenko, a gas chromatograph, part of the COmetary Sampling And Composition (COSAC) experiment, travelled for about 10 years in the interplanetary medium before operating at the surface of the cometary nucleus in November 2014. During its journey in space, the instrument was exposed to the constraining conditions of the interplanetary medium, including reduced environmental pressures. In order to estimate the potential influence of this severe condition on the chromatographic capillary columns, their stationary phase and the subsequent separation capability, a set of flight spare columns were kept under reduced environmental pressure in the laboratory for the same duration as the probe sent to the comet. The columns' analytical performances were evaluated recently and compared to the original ones obtained just before the launch of the Rosetta probe. The results presented here show that the chromatographic performances of the spare chromatographic columns were not altered in time. From this result, it can be expected that the flight instrument will perform nominally for the analysis of the first cometary nucleus sample to be collected ever, and that the preparation of the interpretation of the data to be taken at the cometary surface nucleus can be done through calibration of these spare columns, and other spare components of the instrument.


Subject(s)
Chromatography, Gas/instrumentation , Chromatography, Gas/methods , Pressure
3.
J Chromatogr A ; 1306: 59-71, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23921265

ABSTRACT

The performances of several commercial chiral capillary columns have been evaluated with the aim of determining the one most suitable for enantiomeric separation in a gas chromatograph onboard a space probe. We compared the GC-MS response of three capillary columns coated with different chiral stationary phases (CSP) using volatile chiral organic molecules which are potential markers of a prebiotic organic chemistry. The three different chiral capillary columns are Chirasil-Val, with an amino acid derivative CSP, ChiralDex-ß-PM, with a CSP composed of dissolved permethylated ß-cyclodextrins in polysiloxane, and Chirasil-Dex, with a CSP made of modified cyclodextrins chemically bonded to the polysiloxane backbone. Both kinetics and thermodynamics studies have been carried out to evaluate the chiral recognition potential in these different types of columns. The thermodynamic parameters also allow a better understanding of the driving forces affecting the retention and separation of the enantiomers. The Chirasil-Dex-CSP displays the best characteristics for an optimal resolution of the chiral compounds, without preliminary derivatization. This CSP had been chosen to be the only chiral column in the Sample Analysis at Mars (SAM) experiment onboard the current Mars Science Laboratory (MSL) mission, and is also part of the Mars Organic Molecules Analyzer (MOMA) gas chromatograph onboard the next Martian mission ExoMars. The use of this column could also be extended to all space missions aimed at studying chirality in space.


Subject(s)
Exobiology/methods , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/chemistry , Exobiology/instrumentation , Gas Chromatography-Mass Spectrometry/instrumentation , Kinetics , Mars , Stereoisomerism , Thermodynamics
4.
J Vet Intern Med ; 27(4): 955-63, 2013.
Article in English | MEDLINE | ID: mdl-23734720

ABSTRACT

BACKGROUND: In dogs with appendicular osteosarcoma (OSA), increased pretreatment serum bone-specific alkaline phosphatase (BALP) activity is a negative prognostic factor, associated with shorter disease-free intervals and survival times, but a biologic basis for observed differential serum BALP activities in canine OSA patients remains incompletely defined. OBJECTIVE: Serum BALP activity will correlate with absolute tumor burden in dogs with OSA. ANIMALS: This study included 96 client-owned dogs with appendicular OSA. METHODS: In canine OSA cell lines, the expression and membranous release of BALP was evaluated in vitro. The correlation between serum BALP activity and radiographic primary tumor size was evaluated in OSA-bearing dogs. In dogs developing visceral OSA metastases, serial changes in serum BALP activities were evaluated in relation to progression of macroscopic metastases, and visceral metastatic OSA cells were evaluated for BALP expression. RESULTS: In vitro, BALP expression was not associated with either tumorigenic or metastatic phenotype, rather the quantity of membranous BALP released was proportional with cell density. In dogs devoid of macroscopic metastases, there was a positive correlation between serum BALP activity and absolute primary tumor size. In dogs with progressive OSA metastases, serum BALP activity increased and coincided with the development of macroscopic metastases. OSA cells derived from visceral metastatic lesions retained BALP expression. CONCLUSIONS AND CLINICAL IMPORTANCE: Tumor burden is a determinant of serum BALP activity in dogs with appendicular OSA. The association between increased pretreatment BALP activity and negative clinical prognosis may simply be attributed to greater initial tumor burden, and consequently more advanced tumor stage.


Subject(s)
Alkaline Phosphatase/metabolism , Bone Neoplasms/metabolism , Dog Diseases/pathology , Osteosarcoma/veterinary , Alkaline Phosphatase/genetics , Animals , Cell Line, Tumor , Dog Diseases/enzymology , Dogs , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Male , Osteosarcoma/metabolism
5.
J Chromatogr A ; 1245: 158-66, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-22633064

ABSTRACT

Within the perspective of the current and next space missions to Mars (MSL 2011 and Exomars 2016-2018), the detection and enantioselective separation of building blocks such as the amino acids are important subjects which are becoming fundamental for the search for traces of life on the surface and subsurface of Mars. In this work, we have developed and optimized a method adapted to space experimentation to derivatize and analyze amino acids, using hexafluoroacetone as the derivatizing agent. The temperature, duration of the derivative transfer to the analyser, and chromatographic separation parameters have been optimized to meet the instrument design constraints imposed on devices for extraterrestrial experiments. The work presented in this rationale has established that hexafluoroacetone, in addition to its intrinsic qualities, such as the production of light-weight derivatives (no racemization) and great resistance to the drastic operating conditions, has indeed facilitated simple and fast derivatization that appears to be suitable for in situ analysis in space. By using hexafluoroacetone as the derivatizing agent, we successfully identified, 21 amino acids including 12 of the 20 proteinic amino acids without stirring or extraction steps. Ten of these derivatized amino acids were enantioselectively separated. The precision and accuracy measurements for the D/L ratio showed that the proposed method was also suitable for the determination of both enantioselective forms of most of the tested amino acids. The limits of detection obtained were lower than the ppb level of organic molecules detected in Martian meteorites.


Subject(s)
Amino Acids/analysis , Extraterrestrial Environment/chemistry , Gas Chromatography-Mass Spectrometry/methods , Acetone/analogs & derivatives , Acetone/chemistry , Fluorocarbons/chemistry , Humans
6.
J Chromatogr A ; 1217(5): 731-40, 2010 Jan 29.
Article in English | MEDLINE | ID: mdl-20036768

ABSTRACT

Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 degrees C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites.


Subject(s)
Amino Acids/isolation & purification , Dimethylformamide/analogs & derivatives , Exobiology/methods , Gas Chromatography-Mass Spectrometry/methods , Dimethylformamide/chemistry , Extraterrestrial Environment , Least-Squares Analysis , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism , Temperature
7.
J Chromatogr A ; 1150(1-2): 162-72, 2007 May 25.
Article in English | MEDLINE | ID: mdl-17222857

ABSTRACT

This work describes a GC-MS method for enantioselective separation of amino acids. The method is based on a derivatization reaction which employs a mixture of alkyl chloroformate-alcohol-pyridine, as reagents to obtain the N(O,S)-alkyl alkoxy carbonyl esters of amino acids. Various reaction parameters are investigated and optimized to achieve a reproducible derivatization procedure suitable for separation of amino acid enantiomers on Chirasil-L-Val chiral stationary phase. In particular, the following topics are investigated for 20 proteinogenic amino acids: (i) the proper reagent and reaction conditions to obtain the highest derivative yield; (ii) the amino acid reactivity and the MS properties of the obtained derivatives; (iii) the linearity and sensitivity of the analytical method; (iv) the retention behavior of the derivatives and their enantiomeric separation on the Chirasil-L-Val chiral stationary phase. By combining the resolution power of the Chirasil-L-Val column and the high selectivity of the SIM MS detection mode, the described procedure enables the enantiomeric separation and quantification of 16 enantiomeric pairs of amino acids. The procedure is simple and fast and reproducible. It displays a wide linearity range at ppb detection limits for quantitative determinations: these properties make this derivatization method a suitable candidate for amino acid GC-MS analysis on board of the spacecrafts in space exploration missions of solar system body environments.


Subject(s)
Amino Acids/chemistry , Formates/chemistry , Gas Chromatography-Mass Spectrometry/methods , Amino Acids/analysis , Molecular Structure , Reproducibility of Results , Stereoisomerism
8.
J Chromatogr A ; 1131(1-2): 215-26, 2006 Oct 27.
Article in English | MEDLINE | ID: mdl-16919657

ABSTRACT

In the frame of the calibration of the aerosol collector and pyrolyser, and gas chromatography-mass spectrometry experiments of the Huygens probe arrived at Titan, systematic experimental studies were led to estimate the influence of the operating conditions on the analyses that should have been achieved in the Titan's atmosphere. The primary objective of this study was to estimate the influence of operating conditions variations induced by (i) instrumental modifications made shortly before the probe launch which can have changed the operating pressures; (ii) the change of the probe environmental conditions (pressure, temperature) during its descent in the atmosphere; (iii) a possible deviation of pressure and temperature regulations from their nominal values because of the long journey of the instrument in space, or of other external events. The secondary objective of this work was to create an analytical database that can be used as a reference to treat the chromatograms obtained in situ, and help to identify chromatographically the analyzed species, complementary to mass spectrometry. Beyond the application to a specific instrument, this work was also useful to experimentally estimate the fundamental evolution of the separation as a function of the changes of operating conditions with time. The obtained results show (i) the significant influence of inlet and outlet pressure variation on the time of analysis, but not on the separation power. It thus enables to significantly shorten the analysis duration, and thus to analyze more compounds within the fixed time of analysis of the instrument; (ii) the significant influence of temperature on the retention. In this frame, the enthalpies of exchange between the gas phase and the stationary phase of the species were determined to be used to retrieve the analyzed species in case of deviation of the operating temperature; (iii) that the possible aging of the columns does not have influence on the columns efficiency and separation power; (iv) the analytical capabilities of the gas chromatography-mass spectrometry experiment within operating conditions representative of those encountered in situ. Finally, in spite of possible operating condition changes, it is shown that results coming from the gas chromatograph-mass spectrometer experiment, which are currently under analysis, could bring important information on the Titan's atmosphere and its history.


Subject(s)
Atmosphere/analysis , Gas Chromatography-Mass Spectrometry/methods , Saturn , Temperature , Atmospheric Pressure , Extraterrestrial Environment , Meteoroids
9.
Chirality ; 18(4): 279-95, 2006 May 05.
Article in English | MEDLINE | ID: mdl-16534802

ABSTRACT

The target of the in-situ research of optical activity in extraterrestrial samples stimulated an extended investigation of a GC-MS method based on the derivatization of amino acids by using a mixture of perfluorinated alcohols and perfluorinated anhydrides. Amino acids are converted to their N(O,S)-perfluoroacyl perfluoroalkyl esters in a single-step procedure, using different combinations of the derivatization reagents trifluoroacetic anhydride (TFAA)-2,2,2-trifluoro-1-ethanol (TFE), TFAA-2,2,3,3,4,4,4-heptafluoro-1-butanol (HFB), and heptafluorobutyric anhydride (HFBA)-HFB. The derivatives obtained are analyzed using two different chiral columns: Chirasil-L-Val and gamma-cyclodextrin (Rt-gamma-DEXsa) stationary phases which show different and complementary enantiomeric selectivity. The mass spectra of the derivatives are studied, and mass fragmentation patterns are proposed: significant fragment ions can be identified to detect amino acid derivatives. The obtained results are compared in terms of the enantiomeric separation achieved and mass spectrometric response. Linearity studies and the measurement of the limit of detection (LOD) show that the proposed method is suitable for a quantitative determination of enantiomers of several amino acids. The use of the programmed temperature vaporiser (PTV) technique for the injection of the untreated reaction mixture is a promising method for avoiding manual treatment of the sample and decreasing the LOD.


Subject(s)
Amino Acids/analysis , Space Flight , Acylation , Amino Acids/chemistry , Calibration , Esterification , Esters/analysis , Esters/chemistry , Gas Chromatography-Mass Spectrometry , Molecular Structure , Reference Standards , Stereoisomerism , Time Factors , Volatilization
10.
Nature ; 438(7069): 796-9, 2005 Dec 08.
Article in English | MEDLINE | ID: mdl-16319825

ABSTRACT

Aerosols in Titan's atmosphere play an important role in determining its thermal structure. They also serve as sinks for organic vapours and can act as condensation nuclei for the formation of clouds, where the condensation efficiency will depend on the chemical composition of the aerosols. So far, however, no direct information has been available on the chemical composition of these particles. Here we report an in situ chemical analysis of Titan's aerosols by pyrolysis at 600 degrees C. Ammonia (NH3) and hydrogen cyanide (HCN) have been identified as the main pyrolysis products. This clearly shows that the aerosol particles include a solid organic refractory core. NH3 and HCN are gaseous chemical fingerprints of the complex organics that constitute this core, and their presence demonstrates that carbon and nitrogen are in the aerosols.


Subject(s)
Extraterrestrial Environment/chemistry , Organic Chemicals/analysis , Saturn , Aerosols/chemistry , Ammonia/analysis , Atmosphere/chemistry , Carbon/analysis , Gas Chromatography-Mass Spectrometry , Gases/analysis , Gases/chemistry , Hot Temperature , Hydrogen Cyanide/analysis , Nitrogen/analysis
11.
Cytogenet Genome Res ; 110(1-4): 108-16, 2005.
Article in English | MEDLINE | ID: mdl-16093662

ABSTRACT

Genomes operate as sophisticated information storage systems. Generic repeated signals in the DNA format expression of coding sequence files and organize additional functions essential for genome replication and accurate transmission to progeny cells. Retroelements comprise a major fraction of many genomes and contain a surprising diversity of functional signals. In this article, we summarize some features of the taxonomic distribution of retroelements, especially mammalian SINEs, tabulate functional roles documented for different classes of retroelements, and discuss their potential roles as genome organizers. In particular, the fact that certain retroelements serve as boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the reversed transcribed component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the "functionalist" perspective on repetitive DNA leads to new ways of thinking about the systemic organization of cellular genomes and provides several novel possibilities involving retroelements in evolutionarily significant genome reorganization.


Subject(s)
Evolution, Molecular , Genome , Retroelements , Biotechnology , Heterochromatin/genetics , Models, Genetic , Reverse Transcription
12.
J Chromatogr A ; 1071(1-2): 255-61, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15865201

ABSTRACT

Gas chromatography-mass spectrometry (GC-MS) will be used in future space exploration missions, in order to seek organic molecules at the surface of Mars, and especially potential chemical indicators of life. Carboxylic acids are among the most expected organic species at the surface of Mars, and they could be numerous in the analysed samples. For this reason, a chemometric method was applied to support the interpretation of chromatograms of carboxylic acid mixtures. The method is based on AutoCovariance Function (ACVF) in order to extract information on the sample--number and chemical structure of the components--and on separation performance. The procedure was applied to standard samples containing targeted compounds which are among the most expected to be present in the Martian soil: n-alkanoic and benzene dicarboxylic acids. ACVF was computed on the obtained chromatograms and plotted versus retention time: peaks of the ACVF plot can be related to specific molecular structures and are diagnostic for chemical identification of compounds.


Subject(s)
Exobiology , Gas Chromatography-Mass Spectrometry/methods , Mars , Soil/analysis
13.
Aquat Toxicol ; 71(3): 273-82, 2005 Feb 10.
Article in English | MEDLINE | ID: mdl-15670633

ABSTRACT

Testosterone conjugation activities, microsomal acyltransferases and cytosolic sulfotransferases, were investigated in three invertebrate species, the gastropod Marisa cornuarietis, the amphipod Hyalella azteca, and the echinoderm Paracentrotus lividus. The goals of the study were to characterize steroid conjugation pathways in different invertebrate phyla and to assess the susceptibility of those processes to disruption by environmental chemicals. All three species exhibited palmitoyl-CoA: testosterone acyltransferase activity (ATAT) in the range of 100-510 pmol/min/mg protein. Despite similarities in specific activities, kinetic studies indicated that ATAT had a higher affinity for testosterone but a lower V(max) in M. cornuarietis than in P. lividus, and intermediate values were found for H. azteca. In contrast, the activity of testosterone sulfotransferase (SULT) was rather low (0.05-0.18 pmol/min/mg protein) in M. cornuarietis and H. azteca. The low activity precluded kinetic analyses and inhibition studies with these species. P. lividus digestive tube displayed high SULT activity (50-170 pmol/min/mg protein) at moderate testosterone concentrations, but was inhibited at high testosterone concentrations. The interference of model pollutants (triphenyltin (TPT), tributyltin (TBT), and fenarimol) with these conjugation pathways was investigated in vitro. Both TPT and TBT (100 microM) inhibited ATAT in P. lividus (68 and 42% inhibition, respectively), and appeared to act as non-competitive inhibitors. ATAT activity in M. cornuarietis was less affected by organotins, and a significant inhibition (20% inhibition) was detected only with TBT. Fenarimol (100 microM) did not affect ATAT in any of the species tested. Sulfation of testosterone was suppressed by the organotins as well as fenarimol when using cytosolic preparations from P. lividus. These results demonstrated the existence of interphyla differences in testosterone conjugation, and revealed that these processes can serve as targets for endocrine disrupting chemicals.


Subject(s)
Acyltransferases/metabolism , Invertebrates/drug effects , Palmitoyl Coenzyme A/metabolism , Sulfotransferases/metabolism , Testosterone/metabolism , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Cytosol/metabolism , Invertebrates/enzymology , Italy , Kinetics , Microsomes/metabolism , Organotin Compounds/toxicity , Pyrimidines/toxicity , Seawater , Species Specificity , Trialkyltin Compounds/toxicity
14.
J Chromatogr A ; 999(1-2): 165-74, 2003 May 30.
Article in English | MEDLINE | ID: mdl-12885061

ABSTRACT

A solid-liquid extraction method able to perform in situ extraction of organic compounds on Mars is proposed. The extraction efficiency of various organic solvents was tested and compared to that of water. The selected key compounds are molecules of exobiological interest: glycine, alanine, serine, glutamic acid, oxalic acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid and 1,3,5-benzenetricarboxylic acid. Among the organic solvents, propanol gives the highest yield of extraction for all the targeted compounds except for benzoic acid. A mixture of propanol and ethyl acetate increases significantly the extraction yield of benzoic acid. The extraction time was considerably reduced (140 h to 15 min) by using sonication. The method is discussed for an easy automation with coupling to an in situ GC-MS space instrument.


Subject(s)
Exobiology , Mars , Soil/analysis , Gas Chromatography-Mass Spectrometry
15.
J Chromatogr A ; 982(2): 303-12, 2002 Dec 27.
Article in English | MEDLINE | ID: mdl-12489887

ABSTRACT

As part of the development of the European Space Agency Rosetta space mission to investigate a cometary nucleus, the selection of columns dedicated to the gas chromatographic subsystem of the Cometary Sampling and Composition (COSAC) experiment was achieved. Once the space probe launched, these columns will be exposed to the harsh environmental constraints of space missions: vibrations, radiation (by photons or energetic particles), space vacuum, and large temperature range. In order to test the resistance of the flight columns and their stationary phases, the columns were exposed to these rough conditions reproduced in the laboratory. The comparison of the analytical performances of the columns, evaluated prior and after the environmental tests, demonstrated that all the columns withstand space constraints, and that their analytical properties were preserved. Therefore, all the selected capillary columns, even having porous layer or chiral stationary phases, were qualified for space exploration.


Subject(s)
Chromatography, Gas/instrumentation , Meteoroids , Space Flight
16.
Chirality ; 14(6): 527-32, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12112349

ABSTRACT

Two different methods of derivatization were studied in order to select and optimize one for the in situ enantiomeric separation of amino acids present in Martian samples. The method, using DMF-DMA [N,N-dimethylformamide dimethyl acetal], is simple and easily automated. However, byproducts of the reaction interfere in the gas chromatograms and mass spectrometry detection is needed for in situ analysis. The chloroformate derivatization has several advantages, including the use of achiral robust capillary column, room temperature reaction, and short analysis. The choice of the definitive derivatization method will depend on the energy and time devoted to the analysis of amino acids in the next Mars exploration missions.


Subject(s)
Dimethylformamide/analogs & derivatives , Origin of Life , Space Flight , Amino Acids/chemistry , Amino Acids/isolation & purification , Formates , Gas Chromatography-Mass Spectrometry , Mars , Stereoisomerism
17.
J Chromatogr A ; 953(1-2): 165-73, 2002 Apr 12.
Article in English | MEDLINE | ID: mdl-12058930

ABSTRACT

The cometary sampling and composition (COSAC) experiment is one of the principal experiments of the surface lander probe of the European Space Agency Rosetta mission to be launched in January 2003. The instrument is designed for the in situ chemical analysis of a cometary nucleus as the details of the nucleus composition are of primary importance for understanding both the formation of the solar system, and the origin of life on Earth. The COSAC experiment consists of an evaporation/pyrolysis device and two analytical systems: a multi-column gas chromatograph and a high-resolution time-of-flight mass spectrometer which may either be operated alone or in a coupled mode. The gas chromatograph includes five general purpose chromatographic columns and three chiral ones, all mounted in parallel. Taking into account the chemical species potentially present in the cometary nucleus as well as the space constraints, a set of five complementary columns was selected to perform the separation and identification of the compounds present in the cometary nucleus. This set of columns includes a carbon molecular sieve porous-layer open tubular (PLOT) column used for the separation of both the noble and other permanent gases, and the C1-C2 hydrocarbons. A second PLOT column uses a divinylbenzene-ethylene glycol-dimethylacrylate porous polymer as stationary phase for the analysis of a wide range of C1-C2 organic molecules, Two complementary wall-coated open tubular (WCOT) columns with polydimethylsiloxane (PDMS) liquid stationary phases, one containing cyanopropyl-phenylsiloxane and the other diphenylsiloxane groups, are designed to target the same range of organic compounds (C3-C7) which could be representative of the widest range of cometary compounds. A third WCOT column with an apolar stationary phase made of non-substituted PDMS is used for the separation and identification of higher-molecular-mass compounds (up to C10) and aromatic species (monoaromatic and polyaromatic). This paper describes these five general-purpose capillary PLOT and WCOT columns, selected to be used in the COSAC GC system. The analytical capabilities are examined with a special emphasis on the exobiological and planetological implications.


Subject(s)
Chromatography, Gas/methods , Meteoroids , Gases/analysis , Hydrocarbons/analysis , Molecular Weight
18.
Adv Space Res ; 27(2): 195-9, 2001.
Article in English | MEDLINE | ID: mdl-11605632

ABSTRACT

If there is, or ever was, life in our solar system beyond the Earth, Mars is the most likely place to search for. Future space missions will have then to take into account the detection of prebiotic molecules or molecules of biological significance such as amino acids. Techniques of analysis used for returned samples have to be very sensitive and avoid any chemical or biological contamination whereas in situ techniques have to be automated, fast and low energy consuming. Several possible methods could be used for in situ amino acid analyses on Mars, but gas chromatography would likely be the most suitable. Returned samples could be analyzed by any method in routine laboratory use such as gas chromatography, already successfully performed for analyses of organic matter including amino acids from martian meteorites. The derivatization step, which volatilizes amino acids to perform both in situ and laboratory analysis by gas chromatography, is discussed here.


Subject(s)
Amino Acids/analysis , Exobiology/instrumentation , Mars , Chromatography, Gas , Extraterrestrial Environment , Soil/analysis , Space Flight/instrumentation
19.
J Chromatogr A ; 915(1-2): 199-207, 2001 Apr 27.
Article in English | MEDLINE | ID: mdl-11358249

ABSTRACT

Three different methods of derivatization are tested in order to select and optimize one for the in situ analysis of amino acids in Martian samples. The silylation procedure can easily be automated with a high yield and a linear response in a large range of concentrations. The alkylation method is simple and easily automated, but irreproducible data are obtained for the reaction in the GC liner at quite a high temperature (300 degrees C). Moreover by-products of the reaction interfere in the GC chromatograms and mass spectrometry detection is needed for product identification. The chloroformate derivatization has several advantages such as one-step reaction and short time analysis. The main problem of this procedure is the shaking step which difficult to develop in space application.


Subject(s)
Amino Acids/analysis , Chromatography, Gas/methods , Acylation , Alkylation , Amino Acids/chemistry , Mars , N-Acetylneuraminic Acid/chemistry
20.
Am Psychol ; 56(4): 332, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11330230
SELECTION OF CITATIONS
SEARCH DETAIL
...