Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38832749

ABSTRACT

Biomolecular condensates play a key role in cytoplasmic compartmentalization and cell functioning. Despite extensive research on the physico-chemical, thermodynamic, or crowding aspects of the formation and stabilization of the condensates, one less studied feature is the role of external perturbative fluid flow. In fact, in living cells, shear stress may arise from streaming or active transport processes. Here, we investigate how biomolecular condensates are deformed under different types of shear flows. We first model Couette flow perturbations via two-way coupling between the condensate dynamics and fluid flow by deploying Lattice Boltzmann Molecular Dynamics. We then show that a simplified approach where the shear flow acts as a static perturbation (one-way coupling) reproduces the main features of the condensate deformation and dynamics as a function of the shear rate. With this approach, which can be easily implemented in molecular dynamics simulations, we analyze the behavior of biomolecular condensates described through residue-based coarse-grained models, including intrinsically disordered proteins and protein/RNA mixtures. At lower shear rates, the fluid triggers the deformation of the condensate (spherical to oblated object), while at higher shear rates, it becomes extremely deformed (oblated or elongated object). At very high shear rates, the condensates are fragmented. We also compare how condensates of different sizes and composition respond to shear perturbation, and how their internal structure is altered by external flow. Finally, we consider the Poiseuille flow that realistically models the behavior in microfluidic devices in order to suggest potential experimental designs for investigating fluid perturbations in vitro.


Subject(s)
Biomolecular Condensates , Molecular Dynamics Simulation , Biomolecular Condensates/chemistry , Biomolecular Condensates/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , RNA/chemistry , Shear Strength
2.
J Phys Chem Lett ; 15(7): 1943-1949, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38346112

ABSTRACT

In this work, we investigate how fluid flows impact the aggregation mechanisms of Aß40 proteins and Aß16-22 peptides and mechanically perturb their (pre)fibrillar aggregates. We exploit the OPEP coarse-grained model for proteins and the Lattice Boltzmann Molecular Dynamics technique. We show that beyond a critical shear rate, amyloid aggregation speeds up in Couette flow because of the shorter collisions times between aggregates, following a transition from diffusion limited to advection dominated dynamics. We also characterize the mechanical deformation of (pre)fibrillar states due to the fluid flows (Couette and Poiseuille), confirming the capability of (pre)fibrils to form pathological loop-like structures as detected in experiments. Our findings can be of relevance for microfluidic applications and for understanding aggregation in the interstitial brain space.


Subject(s)
Amyloid , Molecular Dynamics Simulation , Amyloid/chemistry , Diffusion , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry
3.
J Phys Chem Lett ; 15(5): 1435-1441, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38291814

ABSTRACT

Molecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the Escherichia coli proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death. Global roto-translational motions turn out to be the main factor distinguishing the bacterial dynamical properties. We ascribe this behavior to the difference in the average proteome net charge, which becomes less negative for increasing bacterial thermal stability. We propose that the chemical-physical properties of the cytoplasm and the global dynamics of the resulting proteome are fine-tuned by evolution to uphold optimal thermal stability conditions.


Subject(s)
Molecular Dynamics Simulation , Proteome , Temperature , Escherichia coli
4.
J Struct Biol ; 215(4): 108039, 2023 12.
Article in English | MEDLINE | ID: mdl-37884067

ABSTRACT

In this work, we investigated the lactate dehydrogenase (LDH) from Selenomonas ruminantium (S. rum), an enzyme that differs at key amino acid positions from canonical allosteric LDHs. The wild type (Wt) of this enzyme recognises pyuvate as all LDHs. However, introducing a single point mutation in the active site loop (I85R) allows S. Rum LDH to recognize the oxaloacetate substrate as a typical malate dehydrogenase (MalDH), whilst maintaining homotropic activation as an LDH. We report the tertiary structure of the Wt and I85RLDH mutant. The Wt S. rum enzyme structure binds NADH and malonate, whilst also resembling the typical compact R-active state of canonical LDHs. The structure of the mutant with I85R was solved in the Apo State (without ligand), and shows no large conformational reorganization such as that observed with canonical allosteric LDHs in Apo state. This is due to a local structural feature typical of S. rum LDH that prevents large-scale conformational reorganization. The S. rum LDH was also studied using Molecular Dynamics simulations, probing specific local deformations of the active site that allow the S. rum LDH to sample the T-inactive state. We propose that, with respect to the LDH/MalDH superfamily, the S. rum enzyme possesses a specificstructural and dynamical way to ensure homotropic activation.


Subject(s)
L-Lactate Dehydrogenase , Lactic Acid , Allosteric Regulation , L-Lactate Dehydrogenase/metabolism , Selenomonas/genetics , Selenomonas/metabolism , Malate Dehydrogenase/chemistry
5.
Biophys J ; 122(13): 2744-2756, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37264571

ABSTRACT

The bacterial fimbrial adhesin FimH is a remarkable and well-studied catch-bond protein found at the tip of E. coli type 1 pili, which allows pathogenic strains involved in urinary tract infections to bind high-mannose glycans exposed on human epithelia. The catch-bond behavior of FimH, where the strength of the interaction increases when a force is applied to separate the two partners, enables the bacteria to resist clearance when they are subjected to shear forces induced by urine flow. Two decades of experimental studies performed at the single-molecule level, as well as x-ray crystallography and modeling studies, have led to a consensus picture whereby force separates the binding domain from an inhibitor domain, effectively triggering an allosteric conformational change in the former. This force-induced allostery is thought to be responsible for an increased binding affinity at the core of the catch-bond mechanism. However, some important questions remain, the most challenging one being that the crystal structures corresponding to these two allosteric states show almost superimposable binding site geometries, which questions the molecular origin for the large difference in affinity. Using molecular dynamics with a combination of enhanced-sampling techniques, we demonstrate that the static picture provided by the crystal structures conceals a variety of binding site conformations that have a key impact on the apparent affinity. Crucially, the respective populations in each of these conformations are very different between the two allosteric states of the binding domain, which can then be related to experimental affinity measurements. We also evidence a previously unappreciated but important effect: in addition to the well-established role of the force as an allosteric regulator via domain separation, application of force tends to directly favor the high-affinity binding site conformations. We hypothesize that this additional "local" catch-bond effect could delay unbinding between the bacteria and the host cell before the "global" allosteric transition occurs, as well as stabilizing the complex even more once in the high-affinity allosteric state.


Subject(s)
Escherichia coli , Fimbriae Proteins , Humans , Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Adhesins, Escherichia coli/chemistry , Adhesins, Escherichia coli/metabolism , Bacterial Adhesion/physiology , Binding Sites , Protein Binding
6.
Proteins ; 91(8): 1152-1162, 2023 08.
Article in English | MEDLINE | ID: mdl-37139594

ABSTRACT

Atomic characterization of large nonfibrillar aggregates of amyloid polypeptides cannot be determined by experimental means. Starting from ß-rich aggregates of Y and elongated topologies predicted by coarse-grained simulations and consisting of more than 100 Aß16-22 peptides, we performed atomistic molecular dynamics (MD), replica exchange with solute scaling (REST2), and umbrella sampling simulations using the CHARMM36m force field in explicit solvent. Here, we explored the dynamics within 3 µs, the free energy landscape, and the potential of mean force associated with either the unbinding of one single peptide in different configurations within the aggregate or fragmentation events of a large number of peptides. Within the time scale of MD and REST2, we find that the aggregates experience slow global conformational plasticity, and remain essentially random coil though we observe slow beta-strand structuring with a dominance of antiparallel beta-sheets over parallel beta-sheets. Enhanced REST2 simulation is able to capture fragmentation events, and the free energy of fragmentation of a large block of peptides is found to be similar to the free energy associated with fibril depolymerization by one chain for longer Aß sequences.


Subject(s)
Amyloid beta-Peptides , Molecular Dynamics Simulation , Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Solvents/chemistry , Protein Conformation, beta-Strand , Peptide Fragments/chemistry
7.
Proteins ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038252

ABSTRACT

Probing the structures of amyloid-ß (Aß) peptides in the early steps of aggregation is extremely difficult experimentally and computationally. Yet, this knowledge is extremely important as small oligomers are the most toxic species. Experiments and simulations on Aß42 monomer point to random coil conformations with either transient helical or ß-strand content. Our current conformational description of small Aß42 oligomers is funneled toward amorphous aggregates with some ß-sheet content and rare high energy states with well-ordered assemblies of ß-sheets. In this study, we emphasize another view based on metastable α-helix bundle oligomers spanning the C-terminal residues, which are predicted by the machine-learning AlphaFold2 method and supported indirectly by low-resolution experimental data on many amyloid polypeptides. This finding has consequences in developing novel chemical tools and to design potential therapies to reduce aggregation and toxicity.

8.
J Phys Chem B ; 127(16): 3616-3623, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37071827

ABSTRACT

Macromolecular crowding has profound effects on the mobility of proteins, with strong implications on the rates of intracellular processes. To describe the dynamics of crowded environments, detailed molecular models are needed, capturing the structures and interactions arising in the crowded system. In this work, we present OPEPv7, which is a coarse-grained force field at amino-acid resolution, suited for rigid-body simulations of the structure and dynamics of crowded solutions formed by globular proteins. Using the OPEP protein model as a starting point, we have refined the intermolecular interactions to match the experimentally observed dynamical slowdown caused by crowding. The resulting force field successfully reproduces the diffusion slowdown in homogeneous and heterogeneous protein solutions at different crowding conditions. Coupled with the lattice Boltzmann technique, it allows the study of dynamical phenomena in protein assemblies and opens the way for the in silico rheology of protein solutions.


Subject(s)
Molecular Dynamics Simulation , Proteins , Proteins/chemistry , Computer Simulation , Solutions
9.
J Chem Phys ; 158(9): 095103, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36889954

ABSTRACT

Mucociliary clearance is the first defense mechanism of the respiratory tract against inhaled particles. This mechanism is based on the collective beating motion of cilia at the surface of epithelial cells. Impaired clearance, either caused by malfunctioning or absent cilia, or mucus defects, is a symptom of many respiratory diseases. Here, by exploiting the lattice Boltzmann particle dynamics technique, we develop a model to simulate the dynamics of multiciliated cells in a two-layer fluid. First, we tuned our model to reproduce the characteristic length- and time-scales of the cilia beating. We then check for the emergence of the metachronal wave as a consequence of hydrodynamic mediated correlations between beating cilia. Finally, we tune the viscosity of the top fluid layer to simulate the mucus flow upon cilia beating, and evaluate the pushing efficiency of a carpet of cilia. With this work, we build a realistic framework that can be used to explore several important physiological aspects of mucociliary clearance.


Subject(s)
Cilia , Mucociliary Clearance , Cilia/physiology , Mucociliary Clearance/physiology , Kinetics , Epithelial Cells , Mucus/physiology
10.
ACS Cent Sci ; 9(1): 93-102, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36712493

ABSTRACT

Temperature variations have a big impact on bacterial metabolism and death, yet an exhaustive molecular picture of these processes is still missing. For instance, whether thermal death is determined by the deterioration of the whole or a specific part of the proteome is hotly debated. Here, by monitoring the proteome dynamics of E. coli, we clearly show that only a minor fraction of the proteome unfolds at the cell death. First, we prove that the dynamical state of the E. coli proteome is an excellent proxy for temperature-dependent bacterial metabolism and death. The proteome diffusive dynamics peaks at about the bacterial optimal growth temperature, then a dramatic dynamical slowdown is observed that starts just below the cell's death temperature. Next, we show that this slowdown is caused by the unfolding of just a small fraction of proteins that establish an entangling interprotein network, dominated by hydrophobic interactions, across the cytoplasm. Finally, the deduced progress of the proteome unfolding and its diffusive dynamics are both key to correctly reproduce the E. coli growth rate.

11.
Phys Rev Lett ; 129(20): 203001, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36462011

ABSTRACT

Nuclear magnetic relaxation is widely used to probe protein dynamics. For decades, most analyses of relaxation in proteins have relied successfully on the model-free approach, forgoing mechanistic descriptions of motion. Model-free types of correlation functions cannot describe a large carbon-13 relaxation dataset in protein side chains. Here, we use molecular dynamics simulations to design explicit models of motion and solve Fokker-Planck diffusion equations. These models of motion provide better agreement with relaxation data, mechanistic insight, and a direct link to configuration entropy.


Subject(s)
Molecular Dynamics Simulation , Motion , Diffusion , Entropy
12.
J Phys Chem B ; 126(49): 10317-10326, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36469912

ABSTRACT

Understanding the atomistic resolution changes during the self-assembly of amyloid peptides or proteins is important to develop compounds or conditions to alter the aggregation pathways and suppress the toxicity and potentially aid in the development of drugs. However, the complexity of protein aggregation and the transient order/disorder of oligomers along the pathways to fibril are very challenging. In this Perspective, we discuss computational studies of amyloid polypeptides carried out under various conditions, including conditions closely mimicking in vivo and point out the challenges in obtaining physiologically relevant results, focusing mainly on the amyloid-beta Aß peptides.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Peptide Fragments/chemistry , Alzheimer Disease/metabolism
13.
J Phys Chem A ; 126(38): 6628-6636, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36103312

ABSTRACT

Self-assembled artificial water channels (AWCs) are reshaping current water desalination technologies. Recently, the improvements achieved by incorporating hydrophilic compounds into polyamide membranes (PA) at the interface were confirmed experimentally. However, the determination of the nanoscale structures of AWCs remains unclear. An important step in the preparation of PA membranes is the solubilization of a colloidal suspension of the solid phase in a water-ethanol mixture. We perform molecular dynamics simulations to study the nanoscale structures of AWC aggregates. We characterize the size and shape of the aggregates at several key locations in the ternary phase diagram. The role of ethanol in the formation of the interface between the solvent and the solute phase is highlighted. We found that the structure of the aggregates formed in the ternary solution resembled the disordered sponge-like structures observed when AWCs were inserted into lipid membranes. Such permeable sponge architectures allow the passage of water despite their noncrystalline organization and were previously shown to be consistent with AWC permeation measurements in membrane environments.


Subject(s)
Aquaporins , Water , Ethanol/chemistry , Lipids , Membranes, Artificial , Nylons , Solvents , Water/chemistry
14.
Mol Biol Evol ; 39(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36056899

ABSTRACT

We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.


Subject(s)
Malate Dehydrogenase , Malates , Allosteric Regulation , Amino Acids/genetics , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Mutation , Phylogeny
15.
ACS Chem Neurosci ; 13(6): 711-713, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35255205

ABSTRACT

Aggregation of amyloid-ß (Aß42) protein is one hallmark of Alzheimer's disease, and the conformations of the smallest Aß42 oligomers are largely unknown. Here, we explore the application of the deep learning AlphaFold2 method to the structure determination of Aß42 monomers up to hexamers. The results shed light on the early Aß42 aggregation steps in the bulk solution.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Humans , Peptide Fragments/metabolism
16.
Biology (Basel) ; 10(12)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34943155

ABSTRACT

In this work, we investigate the ß-barrel of superoxide dismutase 1 (SOD1) in a mutated form, the isoleucine 35 to alanine (I35A) mutant, commonly used as a model system to decipher the role of the full-length apoSOD1 protein in amyotrophic lateral sclerosis (ALS). It is known from experiments that the mutation reduces the stability of the SOD1 barrel and makes it largely unfolded in the cell at 37 degrees Celsius. We deploy state-of-the-art computational machinery to examine the thermal destabilization of the I35A mutant by comparing two widely used force fields, Amber a99SB-disp and CHARMM36m. We find that only the latter force field, when combined with the Replica Exchange with Solute Scaling (REST2) approach, reproduces semi-quantitatively the experimentally observed shift in the melting between the original and the mutated SOD1 barrel. In addition, we analyze the unfolding process and the conformational landscape of the mutant, finding these largely similar to those of the wildtype. Nevertheless, we detect an increased presence of partially misfolded states at ambient temperatures. These states, featuring conformational changes in the region of the ß-strands ß4-ß6, might provide a pathway for nonnative aggregation.

17.
Polymers (Basel) ; 13(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833213

ABSTRACT

Von Willebrand Factor (vWf) is a giant multimeric extracellular blood plasma involved in hemostasis. In this work we present multi-scale simulations of its three-domains fragment A1A2A3. These three domains are essential for the functional regulation of vWf. Namely the A2 domain hosts the site where the protease ADAMTS13 cleavages the multimeric vWf allowing for its length control that prevents thrombotic conditions. The exposure of the cleavage site follows the elongation/unfolding of the domain that is caused by an increased shear stress in blood. By deploying Lattice Boltzmann molecular dynamics simulations based on the OPEP coarse-grained model for proteins, we investigated at molecular level the unfolding of the A2 domain under the action of a perturbing shear flow. We described the structural steps of this unfolding that mainly concerns the ß-strand structures of the domain, and we compared the process occurring under shear with that produced by the action of a directional pulling force, a typical condition of single molecule experiments. We observe, that under the action of shear flow, the competition among the elongational and rotational components of the fluid field leads to a complex behaviour of the domain, where elongated structures can be followed by partially collapsed melted globule structures with a very different degree of exposure of the cleavage site. Our simulations pose the base for the development of a multi-scale in-silico description of vWf dynamics and functionality in physiological conditions, including high resolution details for molecular relevant events, e.g., the binding to platelets and collagen during coagulation or thrombosis.

18.
J Am Chem Soc ; 143(47): 19909-19918, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34788540

ABSTRACT

Stress granules (SGs) are among the most studied membraneless organelles that form upon heat stress (HS) to sequester unfolded, misfolded, or aggregated protein, supporting protein quality control (PQC) clearance. The folding states that are primarily associated with SGs, as well as the function of the phase separated environment in adjusting the energy landscapes, remain unknown. Here, we investigate the association of superoxide dismutase 1 (SOD1) proteins with different folding stabilities and aggregation propensities with condensates in cells, in vitro and by simulation. We find that irrespective of aggregation the folding stability determines the association of SOD1 with SGs in cells. In vitro and in silico experiments however suggest that the increased flexibility of the unfolded state constitutes only a minor driving force to associate with the dynamic biomolecular network of the condensate. Specific protein-protein interactions in the cytoplasm in comparison to SGs determine the partitioning of folding states between the respective phases during HS.


Subject(s)
Stress Granules/metabolism , Superoxide Dismutase-1/metabolism , HeLa Cells , Humans , Phase Transition , Protein Multimerization , Protein Stability , Protein Unfolding
19.
J Chem Phys ; 154(18): 184102, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34241013

ABSTRACT

Understanding water transport mechanisms at the nanoscale level remains a challenge for theoretical chemical physics. Major advances in chemical synthesis have allowed us to discover new artificial water channels, rivaling with or even surpassing water conductance and selectivity of natural protein channels. In order to interpret experimental features and understand microscopic determinants for performance improvements, numerical approaches based on all-atom molecular dynamics simulations and enhanced sampling methods have been proposed. In this study, we quantify the influence of microscopic observables, such as channel radius and hydrogen bond connectivity, and of meso-scale features, such as the size of self-assembly blocks, on the permeation rate of a self-assembled nanocrystal-like artificial water channel. Although the absolute permeation rate extrapolated from these simulations is overestimated by one order of magnitude compared to the experimental measurement, the detailed analysis of several observed conductive patterns in large assemblies opens new pathways to scalable membranes with enhanced water conductance for the future design.

20.
J Struct Biol ; 213(3): 107769, 2021 09.
Article in English | MEDLINE | ID: mdl-34229075

ABSTRACT

In this work, we combined biochemical and structural investigations with molecular dynamics (MD) simulations to analyze the very different thermal-dependent allosteric behavior of two lactate dehydrogenases (LDH) from thermophilic bacteria. We found that the enzyme from Petrotoga mobilis (P. mob) necessitates an absolute requirement of the allosteric effector (fructose 1, 6-bisphosphate) to ensure functionality. In contrast, even without allosteric effector, the LDH from Thermus thermophilus (T. the) is functional when the temperature is raised. We report the crystal structure of P. mob LDH in the Apo state solved at 1.9 Å resolution. We used this structure and the one from T. the, obtained previously, as a starting point for MD simulations at various temperatures. We found clear differences between the thermal dynamics, which accounts for the behavior of the two enzymes. Our work demonstrates that, within an allosteric enzyme, some areas act as local gatekeepers of signal transmission, allowing the enzyme to populate either the T-inactive or the R-active states with different degrees of stringency.


Subject(s)
Extremophiles , Lactate Dehydrogenases , Allosteric Regulation , Extremophiles/metabolism , L-Lactate Dehydrogenase/metabolism , Thermus thermophilus
SELECTION OF CITATIONS
SEARCH DETAIL
...