Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(32): eabo2389, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35947664

ABSTRACT

An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate Apc-driven CRC pathogenesis in vivo. Using an intestinal organoid model, we demonstrate that clock disruption promotes transformation by driving Apc loss of heterozygosity, which hyperactivates Wnt signaling. This up-regulates c-Myc, a known Wnt target, which drives heightened glycolytic metabolism. Using patient-derived organoids, we show that circadian rhythms are lost in human tumors. Last, we identify that variance between core clock and Wnt pathway genes significantly predicts the survival of patients with CRC. Overall, our findings demonstrate a previously unidentified mechanistic link between clock disruption and CRC, which has important implications for young onset cancer prevention.


Subject(s)
Circadian Clocks , Colorectal Neoplasms , Circadian Clocks/genetics , Circadian Rhythm/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Loss of Heterozygosity , Organoids/metabolism , Wnt Signaling Pathway
2.
Trends Cancer ; 8(4): 328-343, 2022 04.
Article in English | MEDLINE | ID: mdl-35094960

ABSTRACT

Chromosomal translocations arising from aberrant repair of multiple DNA double-strand breaks (DSBs) are a defining characteristic of many cancers. DSBs are an essential part of physiological processes in antibody-producing B cells. The B cell environment is poised to generate genome instability leading to translocations relevant to the pathology of blood cancers. These are a diverse set of cancers, but limited data from under-represented groups have pointed to health disparities associated with each. We focus on the DSBs that occur in developing B cells and propose the most likely mechanism behind the formation of translocations. We also highlight specific cancers in which these rearrangements occur and address the growing concern of health disparities associated with them.


Subject(s)
DNA Breaks, Double-Stranded , Neoplasms , DNA , DNA End-Joining Repair , DNA Repair/genetics , Humans , Neoplasms/genetics
3.
J Biol Inorg Chem ; 24(2): 139-149, 2019 03.
Article in English | MEDLINE | ID: mdl-30542925

ABSTRACT

A series of tailored novobiocin-ferrocene conjugates was prepared in moderate yields and investigated for in vitro anticancer and antiplasmodial activity against the MDA-MB-231 breast cancer line and Plasmodium falciparum 3D7 strain, respectively. While the target compounds displayed moderate anticancer activity against the breast cancer cell line with IC50 values in the mid-micromolar range, compounds 10a-c displayed promising antiplasmodial activity as low as 0.889 µM. Furthermore, the most promising compounds were tested for inhibitory effects against a postulated target, heat shock protein 90 (Hsp90). A selection of tailored novobiocin derivatives bearing the organometallic ferrocene unit were synthesized and characterized by common spectroscopic techniques. The target compounds were investigated for in vitro anticancer and antimalarial activity against the MDA-MB-231 breast cancer cell line and Plasmodium falciparum 3D7 strain, respectively.


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents/pharmacology , Ferrous Compounds/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Metallocenes/pharmacology , Novobiocin/pharmacology , Plasmodium falciparum/drug effects , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferrous Compounds/chemistry , HSP90 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Metallocenes/chemistry , Molecular Structure , Novobiocin/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship
4.
Recent Pat Anticancer Drug Discov ; 9(2): 153-75, 2014 May.
Article in English | MEDLINE | ID: mdl-24171821

ABSTRACT

Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to "personalised medicine" with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms, Male/drug therapy , Breast Neoplasms/drug therapy , Precision Medicine , Breast Neoplasms/metabolism , Breast Neoplasms, Male/metabolism , Female , Humans , Male , Patents as Topic , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism
5.
Cancer Cell Int ; 13(1): 39, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23631621

ABSTRACT

BACKGROUND: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents. METHODS: In this study, the tumoursphere assay was validated in MCF-7 cells and used to screen novel marine algal compounds for potential anti-cancer stem cell (CSC) activity in vitro. RESULTS: MCF-7 breast cancer cells were observed to generate tumourspheres or mammospheres after 3-5 days growth in anchorage-independent conditions and an apparent enrichment in potential CSCs was observed by an increase in the proportion of CD44high/CD24low marker-bearing cells and Oct4 expression compared to those in the bulk population grown in regular adherent conditions. Using this assay, a set of algal metabolites was screened for the ability to inhibit mammosphere development as a measure of potential anti-CSC activity. We report that the polyhalogenated monoterpene stereoisomers RU017 and RU018 isolated from the red alga Plocamium cornutum, both of which displayed no cytotoxicity against either adherent MCF-7 breast cancer or MCF-12A non-transformed breast epithelial cells, were able to prevent MCF-7 mammosphere formation in vitro. On the other hand, neither the brown algal carotenoid fucoxanthin nor the chemotherapeutic paclitaxel, both of which were toxic to adherent MCF-7 and MCF-12A cells, were able to inhibit mammosphere formation. In fact, pre-treatment with paclitaxel appeared to enhance mammosphere formation and development, a finding which is consistent with the reported resistance of CSCs to traditional chemotherapeutic agents. CONCLUSION: Due to the proposed clinical significance of CSC in terms of tumour initiation and metastasis, the identification of agents able to inhibit this subpopulation has clinical significance.

6.
Cancer Lett ; 312(2): 129-42, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-21925790

ABSTRACT

The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.


Subject(s)
HSP40 Heat-Shock Proteins/physiology , Neoplasms/metabolism , Stem Cells/metabolism , HSP40 Heat-Shock Proteins/chemistry , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...