Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 275(1): 138-47, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18039331

ABSTRACT

Retinol dehydrogenase 13 (RDH13) is a recently identified short-chain dehydrogenase/reductase related to microsomal retinoid oxidoreductase RDH11. In this study, we examined the distribution of RDH13 in human tissues, determined its subcellular localization and characterized the substrate and cofactor specificity of purified RDH13 in order to better understand its properties. The results of this study demonstrate that RDH13 exhibits a wide tissue distribution and, by contrast with other members of the RDH11-like group of short-chain dehydrogenases/reductases, is a mitochondrial rather than a microsomal protein. Protease protection assays suggest that RDH13 is localized on the outer side of the inner mitochondrial membrane. Kinetic analysis of the purified protein shows that RDH13 is catalytically active and recognizes retinoids as substrates. Similar to the microsomal RDHs, RDH11, RDH12 and RDH14, RDH13 exhibits a much lower Km value for NADPH than for NADH and has a greater catalytic efficiency in the reductive than in the oxidative direction. The localization of RDH13 at the entrance to the mitochondrial matrix suggests that it may function to protect mitochondria against oxidative stress associated with the highly reactive retinaldehyde produced from dietary beta-carotene.


Subject(s)
Alcohol Oxidoreductases/metabolism , Fatty Acid Synthases/metabolism , Mitochondria/enzymology , NADH, NADPH Oxidoreductases/metabolism , Alcohol Oxidoreductases/analysis , Fatty Acid Synthases/analysis , Humans , Kinetics , Mitochondria/metabolism , NADH, NADPH Oxidoreductases/analysis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
2.
Biochem J ; 399(1): 101-9, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16787387

ABSTRACT

Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.


Subject(s)
Acyl-CoA Dehydrogenase/metabolism , Alcohol Oxidoreductases/metabolism , Butyryl-CoA Dehydrogenase/metabolism , Retinoids/metabolism , Aldehyde Reductase , Aldo-Keto Reductases , Animals , Cell Line , Gene Expression Regulation, Enzymologic , Humans , Insecta
3.
Biochemistry ; 44(18): 7035-47, 2005 May 10.
Article in English | MEDLINE | ID: mdl-15865448

ABSTRACT

Retinol dehydrogenase 12 (RDH12) is a novel member of the short-chain dehydrogenase/reductase superfamily of proteins that was recently linked to Leber's congenital amaurosis 3 (LCA). We report the first biochemical characterization of purified human RDH12 and analysis of its expression in human tissues. RDH12 exhibits approximately 2000-fold lower K(m) values for NADP(+) and NADPH than for NAD(+) and NADH and recognizes both retinoids and lipid peroxidation products (C(9) aldehydes) as substrates. The k(cat) values of RDH12 for retinaldehydes and C(9) aldehydes are similar, but the K(m) values are, in general, lower for retinoids. The enzyme exhibits the highest catalytic efficiency for all-trans-retinal (k(cat)/K(m) approximately 900 min(-)(1) microM(-)(1)), followed by 11-cis-retinal (450 min(-)(1) mM(-)(1)) and 9-cis-retinal (100 min(-)(1) mM(-)(1)). Analysis of RDH12 activity toward retinoids in the presence of cellular retinol-binding protein (CRBP) type I or cellular retinaldehyde-binding protein (CRALBP) suggests that RDH12 utilizes the unbound forms of all-trans- and 11-cis-retinoids. As a result, the widely expressed CRBPI, which binds all-trans-retinol with much higher affinity than all-trans-retinaldehyde, restricts the oxidation of all-trans-retinol by RDH12, but has little effect on the reduction of all-trans-retinaldehyde, and CRALBP inhibits the reduction of 11-cis-retinal stronger than the oxidation of 11-cis-retinol, in accord with its higher affinity for 11-cis-retinal. Together, the tissue distribution of RDH12 and its catalytic properties suggest that, in most tissues, RDH12 primarily contributes to the reduction of all-trans-retinaldehyde; however, at saturating concentrations of peroxidic aldehydes in the cells undergoing oxidative stress, for example, photoreceptors, RDH12 might also play a role in detoxification of lipid peroxidation products.


Subject(s)
Alcohol Oxidoreductases/isolation & purification , Carrier Proteins/chemistry , Retina/enzymology , Retinaldehyde/chemistry , Retinoids/chemistry , Retinol-Binding Proteins/chemistry , Alcohol Oxidoreductases/biosynthesis , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Aldehydes/chemistry , Carrier Proteins/metabolism , Catalysis , Histidine/genetics , Humans , Kinetics , Mutagenesis, Insertional , Organ Specificity/genetics , Oxidation-Reduction , Photoreceptor Cells, Vertebrate/metabolism , Protein Binding , Retina/metabolism , Retinaldehyde/antagonists & inhibitors , Retinaldehyde/metabolism , Retinoids/metabolism , Retinol-Binding Proteins/metabolism , Retinol-Binding Proteins, Cellular
4.
Biochemistry ; 42(50): 14838-45, 2003 Dec 23.
Article in English | MEDLINE | ID: mdl-14674758

ABSTRACT

Recently, we reported the first biochemical characterization of a novel member of the short-chain dehydrogenase/reductase superfamily, retinal reductase 1 (RalR1) (Kedishvili et al. (2002) J. Biol. Chem. 277, 28909-28915). In the present study, we purified the recombinant enzyme from the microsomal membranes of insect Sf9 cells, determined its catalytic efficiency for the reduction of retinal and the oxidation of retinol, established its transmembrane topology, and examined the distribution of RalR1 in human tissues and cell lines. Purified RalR1-His(6) exhibited the apparent K(m) values for all-trans-retinal and all-trans-retinol of 0.12 and 0.6 microM, respectively. The catalytic efficiency (k(cat)/K(m)) for the reduction of all-trans-retinal (150,000 min(-1) mM(-1)) was 8-fold higher than that for the oxidation of all-trans-retinol (18,000 min(-1) mM(-1)). Protease protection assays and site-directed mutagenesis suggested that the enzyme is anchored in the membrane by the N-terminal signal-anchor domain, with the majority of the polypeptide chain located on the cytosolic side of the membrane. An important feature that prevented the translocation of RalR1 across the membrane was the positively charged R(25)K motif flanking the N-terminal signal-anchor. The cytosolic orientation of RalR1 suggested that, in intact cells, the enzyme would function predominantly as a reductase. Western blot analysis revealed that RalR1 is expressed in a wide variety of normal human tissues and cancer cell lines. The expression pattern and the high catalytic efficiency of RalR1 are consistent with the hypothesis that RalR1 contributes to the reduction of retinal in various human tissues.


Subject(s)
Intracellular Membranes/enzymology , Microsomes/enzymology , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/isolation & purification , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Baculoviridae/genetics , Blotting, Western , Cell Line , Cell Line, Tumor , Humans , Kinetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Organ Specificity , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Spodoptera/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...