Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 14(47): 13722-13733, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38075650

ABSTRACT

Water oxidation is a bottleneck reaction for the establishment of solar-to-fuel energy conversion systems. Earth-abundant metal-based polyoxometalates are promising heterogeneous water oxidation catalysts that can operate in a wide pH range. However, detailed structure-reactivity relationships are not yet comprehensively understood, hampering the design and synthesis of more effective polyoxometalate-based oxidation catalysts. Here we report the synthesis of an ordered, mixed-metal cobalt-iron Weakley archetype [CoII2(H2O)2FeIII2(CoIIW9O34)2]14- (Co2Fe2-WS), which unexpectedly highlights the strong influence of the central, coordinatively saturated metal ions on the catalytic water oxidation characteristics. The resulting species exhibits catalytic turnover frequencies which are up to 4× higher than those of the corresponding archetype tetracobalt-oxo species [CoII2(H2O)2CoII2(PW9O34)2]10- (Co4-WS). It is further striking that the system becomes catalytically inactive when one of the central positions is occupied by a WVI ion as demonstrated by [CoII2(H2O)2CoIIWVI(CoIIW9O34)2]12- (Co3W-WS). Importantly, this study demonstrates that coordinatively saturated metal ions in this central position, which at first glance appear insignificant, do not solely have a structural role but also impart a distinctive structural influence on the reactivity of the polyoxometalate. These results provide unique insights into the structure-reactivity relationships of polyoxometalates with improved catalytic performance characteristics.

2.
Molecules ; 26(10)2021 May 16.
Article in English | MEDLINE | ID: mdl-34065664

ABSTRACT

Metal-organic frameworks (MOFs) encompass a rapidly expanding class of materials with diverse potential applications including gas storage, molecular separation, sensing and catalysis. So-called 'rod MOFs', which comprise infinitely extended 1D secondary building units (SBUs), represent an underexplored subclass of MOF. Further, porphyrins are considered privileged ligands for MOF synthesis due to their tunable redox and photophysical properties. In this study, the CuII complex of 5,15-bis(4-carboxyphenyl)-10,20-diphenylporphyrin (H2L-CuII, where H2 refers to the ligand's carboxyl H atoms) is used to prepare two new 2D porphyrinic rod MOFs PROD-1 and PROD-2. Single-crystal X-ray analysis reveals that these frameworks feature 1D MnII- or CoII-based rod-like SBUs that are coordinated by labile solvent molecules and photoactive porphyrin moieties. Both materials were characterised using infrared (IR) spectroscopy, powder X-ray diffraction (PXRD) spectroscopy and thermogravimetric analysis (TGA). The structural attributes of PROD-1 and PROD-2 render them promising materials for future photocatalytic investigations.

3.
Inorg Chem ; 60(12): 8388-8393, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34076418

ABSTRACT

High-nuclearity Mn complexes have attracted significant scientific attention due to their fascinating magnetic properties and their relevance to bioinorganic systems and catalysis. In this work, we demonstrate how the strong binding characteristics of phosphonate ligands can be coupled with sterically hindered carboxylate groups to influence the symmetry of Mn coordination clusters. We describe the structure of two high-nuclearity Mn coordination cages, {Mn12} and {Mn15}, synthesized using this approach. These cages are structurally related to the truncated tetrahedral geometry and adopt rare topological features of Archimedean and Johnson-type solids. Their structural attributes distinctively influence their magnetic properties and electrocatalytic H2O oxidation characteristics.

4.
Inorg Chem ; 59(23): 17244-17250, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33215499

ABSTRACT

Five isostructural 2D metal-organic frameworks (MOFs), based on a photoactive CuI metallolinker and mixed mono-/dinuclear secondary building units (SBUs), are reported. The MOFs 1(M) (M = Mn, Co, Cu, Zn, and Cd) exhibit broad absorption across the visible-light spectrum and emission centered at ca. 730 nm. Upon photoexcitation, the rigidity of the framework hinders the pseudo-Jahn-Teller distortion of the metallolinker's excited state, providing efficient intersystem crossing into the triplet state. Rapid luminescence quenching in 1(Cu) and 1(Co) suggests photoinduced electron transfer (PET) to the SBUs, whereas lifetimes of up to 22.2 ns are observed in 1(Zn). The quantum yields relative to the parent photosensitizer (PS) decrease for metal nodes containing transition metal ions with partially occupied d-orbitals but increase for the d10 systems CdII and ZnII by a factor of up to 6. Importantly, the excited state decay rates directly correlate with the occupancy of the [MII(OH2)]x moieties in the MOFs providing nonradiative decay pathways via O-H oscillators. Cyclovoltammetry reveals minor changes in CuI/II oxidation potential, with excited-state reduction potentials for 1(M) rivalling Ru analogues. These results establish bis(diimine)copper(I) photosensitizers as viable metallolinkers for MOFs and present a rare example of an isostructural series obtained from a photosensitive metallolinker.

5.
Dalton Trans ; 48(9): 3018-3027, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30747935

ABSTRACT

Polyoxometalates (POMs) are commonly prepared using a "bottom-up" synthetic procedure. The alternative "top-down" approach of disassembling a pre-formed POM unit to generate new synthetic intermediates is promising, but relatively comparatively underused. In this paper, a rationale for the top-down method is provided, demonstrating that this approach can generate compounds that are fundamentally inaccessible from simple bottom-up assembly. We demonstrate this principle through the synthesis of a series of 10, new, mixed-metal, hybrid compounds with the general formula [TBA]2[MoVI10CoII6O30(RpPO3)6(RcCOO)2(L)x(H2O)6] (TBA = tetrabutylammonium, Rp = phosphonate moiety, Rc = carboxylate moiety, L = pyridyl ligand, and x = 2-4), including a one-dimensional polyoxometalate-based coordination polymer. We propose that these structures are generated from {MoxO3x-1} fragments that cannot be accessed from bottom-up assembly alone. The POM clusters are stabilised by three distinct classes of organic ligand - organophosphonate, carboxylate and pyridyl ligands - which can each be substituted independantly, thus providing a controlled route to ligand functionalisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...