Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 15(8): 846, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31267096

ABSTRACT

In the version of this article originally published, several lines of text in the last paragraph of the right column on page 1 of the PDF were transposed into the bottom paragraph of the left column. The affected text of the left column should read "The ATP-dependent activities of the BAF (SWI/SNF) chromatin remodeling complexes affect the positioning of nucleosomes on DNA and thereby many cellular processes related to chromatin structure, including transcription, DNA repair and decatenation of chromosomes during mitosis12,13." The affected text of the right column should read "SMARCA2/4BD inhibitors are thus precluded from use for the treatment of SMARCA4 mutant cancers but could provide attractive ligands for PROTAC conjugation. Small molecules binding to other bromodomains have been successfully converted into PROTACs by conjugating them with structures capable of binding to the E3 ligases von Hippel-Lindau (VHL) or cereblon5,6,10,11,25,26,27." The errors have been corrected in the PDF version of the paper.

2.
Nat Chem Biol ; 15(7): 672-680, 2019 07.
Article in English | MEDLINE | ID: mdl-31178587

ABSTRACT

Targeting subunits of BAF/PBAF chromatin remodeling complexes has been proposed as an approach to exploit cancer vulnerabilities. Here, we develop proteolysis targeting chimera (PROTAC) degraders of the BAF ATPase subunits SMARCA2 and SMARCA4 using a bromodomain ligand and recruitment of the E3 ubiquitin ligase VHL. High-resolution ternary complex crystal structures and biophysical investigation guided rational and efficient optimization toward ACBI1, a potent and cooperative degrader of SMARCA2, SMARCA4 and PBRM1. ACBI1 induced anti-proliferative effects and cell death caused by SMARCA2 depletion in SMARCA4 mutant cancer cells, and in acute myeloid leukemia cells dependent on SMARCA4 ATPase activity. These findings exemplify a successful biophysics- and structure-based PROTAC design approach to degrade high profile drug targets, and pave the way toward new therapeutics for the treatment of tumors sensitive to the loss of BAF complex ATPases.


Subject(s)
Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Molecular Structure , Nuclear Proteins/metabolism
3.
J Med Chem ; 62(5): 2508-2520, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30739444

ABSTRACT

Focal adhesion tyrosine kinase (PTK2) is often overexpressed in human hepatocellular carcinoma (HCC), and several reports have linked PTK2 depletion and/or pharmacological inhibition to reduced tumorigenicity. However, the clinical relevance of targeting PTK2 still remains to be proven. Here, we present two highly selective and functional PTK2 proteolysis-targeting chimeras utilizing von Hippel-Lindau and cereblon ligands to hijack E3 ligases for PTK2 degradation. BI-3663 (cereblon-based) degrades PTK2 with a median DC50 of 30 nM to >80% across a panel of 11 HCC cell lines. Despite effective PTK2 degradation, these compounds did not phenocopy the reported antiproliferative effects of PTK2 depletion in any of the cell lines tested. By disclosing these compounds, we hope to provide valuable tools for the study of PTK2 degradation across different biological systems.


Subject(s)
Focal Adhesion Kinase 1/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Focal Adhesion Kinase 1/genetics , Focal Adhesion Kinase 1/metabolism , Humans , Ligands , Proteolysis , RNA Interference
4.
Cell Rep ; 20(12): 2860-2875, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28930682

ABSTRACT

The transcription factor BCL6 is a known driver of oncogenesis in lymphoid malignancies, including diffuse large B cell lymphoma (DLBCL). Disruption of its interaction with transcriptional repressors interferes with the oncogenic effects of BCL6. We used a structure-based drug design to develop highly potent compounds that block this interaction. A subset of these inhibitors also causes rapid ubiquitylation and degradation of BCL6 in cells. These compounds display significantly stronger induction of expression of BCL6-repressed genes and anti-proliferative effects than compounds that merely inhibit co-repressor interactions. This work establishes the BTB domain as a highly druggable structure, paving the way for the use of other members of this protein family as drug targets. The magnitude of effects elicited by this class of BCL6-degrading compounds exceeds that of our equipotent non-degrading inhibitors, suggesting opportunities for the development of BCL6-based lymphoma therapeutics.


Subject(s)
Proteolysis , Proto-Oncogene Proteins c-bcl-6/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Models, Molecular , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Protein Domains , Proteolysis/drug effects , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-6/chemistry , Pyrimidines/pharmacology , Structure-Activity Relationship , Ubiquitination/drug effects
5.
Nat Chem Biol ; 12(9): 672-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27376689

ABSTRACT

Here we show that acute myeloid leukemia (AML) cells require the BRD9 subunit of the SWI-SNF chromatin-remodeling complex to sustain MYC transcription, rapid cell proliferation and a block in differentiation. Based on these observations, we derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppress the proliferation of mouse and human AML cell lines. To establish these effects as on-target, we engineered a bromodomain-swap allele of BRD9 that retains functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells confers resistance to the antiproliferative effects of our compound series, thus establishing BRD9 as the relevant cellular target. Furthermore, we used an analogous domain-swap strategy to generate an inhibitor-resistant allele of EZH2. To our knowledge, our study provides the first evidence for a role of BRD9 in cancer and reveals a simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of chemical probes in cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Engineering , Drug Resistance, Neoplasm/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Transcription Factors/antagonists & inhibitors , Alleles , Animals , Antineoplastic Agents/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism
6.
J Med Chem ; 59(10): 4462-75, 2016 05 26.
Article in English | MEDLINE | ID: mdl-26914985

ABSTRACT

Components of the chromatin remodelling switch/sucrose nonfermentable (SWI/SNF) complex are recurrently mutated in tumors, suggesting that altering the activity of the complex plays a role in oncogenesis. However, the role that the individual subunits play in this process is not clear. We set out to develop an inhibitor compound targeting the bromodomain of BRD9 in order to evaluate its function within the SWI/SNF complex. Here, we present the discovery and development of a potent and selective BRD9 bromodomain inhibitor series based on a new pyridinone-like scaffold. Crystallographic information on the inhibitors bound to BRD9 guided their development with respect to potency for BRD9 and selectivity against BRD4. These compounds modulate BRD9 bromodomain cellular function and display antitumor activity in an AML xenograft model. Two chemical probes, BI-7273 (1) and BI-9564 (2), were identified that should prove to be useful in further exploring BRD9 bromodomain biology in both in vitro and in vivo settings.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyridones/pharmacology , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Pyridones/chemical synthesis , Pyridones/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 15(3): 354-65, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26916115

ABSTRACT

BI 882370 is a highly potent and selective RAF inhibitor that binds to the DFG-out (inactive) conformation of the BRAF kinase. The compound inhibited proliferation of human BRAF-mutant melanoma cells with 100× higher potency (1-10 nmol/L) than vemurafenib, whereas wild-type cells were not affected at 1,000 nmol/L. BI 882370 administered orally was efficacious in multiple mouse models of BRAF-mutant melanomas and colorectal carcinomas, and at 25 mg/kg twice daily showed superior efficacy compared with vemurafenib, dabrafenib, or trametinib (dosed to provide exposures reached in patients). To model drug resistance, A375 melanoma-bearing mice were initially treated with vemurafenib; all tumors responded with regression, but the majority subsequently resumed growth. Trametinib did not show any efficacy in this progressing population. BI 882370 induced tumor regression; however, resistance developed within 3 weeks. BI 882370 in combination with trametinib resulted in more pronounced regressions, and resistance was not observed during 5 weeks of second-line therapy. Importantly, mice treated with BI 882370 did not show any body weight loss or clinical signs of intolerability, and no pathologic changes were observed in several major organs investigated, including skin. Furthermore, a pilot study in rats (up to 60 mg/kg daily for 2 weeks) indicated lack of toxicity in terms of clinical chemistry, hematology, pathology, and toxicogenomics. Our results indicate the feasibility of developing novel compounds that provide an improved therapeutic window compared with first-generation BRAF inhibitors, resulting in more pronounced and long-lasting pathway suppression and thus improved efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Mutation , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Animals , Antineoplastic Agents/chemistry , Biomarkers , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm , Enzyme Activation/drug effects , Female , Humans , Isoenzymes , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Structure , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Protein Kinase Inhibitors/chemistry , Protein Multimerization , Proto-Oncogene Proteins B-raf/chemistry , Rats , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...