Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Res ; 16(6): 859-66, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10397606

ABSTRACT

PURPOSE: To investigate the feasibility of producing freeze-dried poly(ethylene oxide) (PEO)-surface modified nanoparticles and to study their ability to avoid the mononuclear phagocytic system (MPS), as a function of the PEO chain length and surface density. METHODS: The nanoparticles were produced by the salting-out method using blends of poly(D,L-lactic acid) (PLA) and poly(D,L-lactic acidco-ethylene oxide) (PLA-PEO) copolymers. The nanoparticles were purified by cross-flow filtration and freeze-dried as such or with variable amounts of trehalose as a lyoprotectant. The redispersibility of the particles was determined immediately after freeze-drying and after 12 months of storage at -25 degrees C. The uptake of the nanoparticles by human monocytes was studied in vitro by flow cytometry. RESULTS: PLA-PEO nanoparticles could be produced from all the polymeric blends used. Particle aggregation after freeze-drying was shown to be directly related to the presence of PEO. Whereas this problem could be circumvented by use of trehalose, subsequent aggregation was shown to occur during storage. These phenomena were possibly related to the specific thermal behaviours of PEO and trehalose. In cell studies, a clear relationship between the PEO content and the decrease of uptake was demonstrated. CONCLUSIONS: The rational design of freeze-dried PEO-surface modified nanoparticles with potential MPS avoidance ability is feasible by using the polymer blends approach combined with appropriate lyoprotection and optimal storage conditions.


Subject(s)
Lactates/metabolism , Monocytes/physiology , Phagocytosis , Polyethylene Glycols/metabolism , Polymers/metabolism , Biodegradation, Environmental , Chemistry, Pharmaceutical , Drug Carriers , Drug Delivery Systems , Feasibility Studies , Flow Cytometry , Freeze Drying , Humans , Lactates/chemistry , Particle Size , Polyethylene Glycols/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...