Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
Nat Commun ; 15(1): 4973, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926357

ABSTRACT

Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion of the defining features of the other three molecular subtypes and includes patients with heterogeneous clinical outcomes. In this study, we employ artificial intelligence (AI)-powered histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently identify a sub-group of NSMP EC patients that has markedly inferior progression-free and disease-specific survival (termed 'p53abn-like NSMP'), in a discovery cohort of 368 patients and two independent validation cohorts of 290 and 614 from other centers. Shallow whole genome sequencing reveals a higher burden of copy number abnormalities in the 'p53abn-like NSMP' group compared to NSMP, suggesting that this group is biologically distinct compared to other NSMP ECs. Our work demonstrates the power of AI to detect prognostically different and otherwise unrecognizable subsets of EC where conventional and standard molecular or pathologic criteria fall short, refining image-based tumor classification. This study's findings are applicable exclusively to females.


Subject(s)
Artificial Intelligence , Endometrial Neoplasms , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Middle Aged , Aged , Image Processing, Computer-Assisted/methods , Prognosis , DNA Copy Number Variations , Whole Genome Sequencing , Tumor Suppressor Protein p53/genetics , Cohort Studies
2.
Nat Commun ; 15(1): 3942, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729933

ABSTRACT

In clinical oncology, many diagnostic tasks rely on the identification of cells in histopathology images. While supervised machine learning techniques necessitate the need for labels, providing manual cell annotations is time-consuming. In this paper, we propose a self-supervised framework (enVironment-aware cOntrastive cell represenTation learning: VOLTA) for cell representation learning in histopathology images using a technique that accounts for the cell's mutual relationship with its environment. We subject our model to extensive experiments on data collected from multiple institutions comprising over 800,000 cells and six cancer types. To showcase the potential of our proposed framework, we apply VOLTA to ovarian and endometrial cancers and demonstrate that our cell representations can be utilized to identify the known histotypes of ovarian cancer and provide insights that link histopathology and molecular subtypes of endometrial cancer. Unlike supervised models, we provide a framework that can empower discoveries without any annotation data, even in situations where sample sizes are limited.


Subject(s)
Endometrial Neoplasms , Ovarian Neoplasms , Humans , Female , Endometrial Neoplasms/pathology , Ovarian Neoplasms/pathology , Machine Learning , Supervised Machine Learning , Algorithms , Image Processing, Computer-Assisted/methods
3.
Nat Commun ; 15(1): 4165, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755180

ABSTRACT

The role for routine whole genome and transcriptome analysis (WGTA) for poor prognosis pediatric cancers remains undetermined. Here, we characterize somatic mutations, structural rearrangements, copy number variants, gene expression, immuno-profiles and germline cancer predisposition variants in children and adolescents with relapsed, refractory or poor prognosis malignancies who underwent somatic WGTA and matched germline sequencing. Seventy-nine participants with a median age at enrollment of 8.8 y (range 6 months to 21.2 y) are included. Germline pathogenic/likely pathogenic variants are identified in 12% of participants, of which 60% were not known prior. Therapeutically actionable variants are identified by targeted gene report and whole genome in 32% and 62% of participants, respectively, and increase to 96% after integrating transcriptome analyses. Thirty-two molecularly informed therapies are pursued in 28 participants with 54% achieving a clinical benefit rate; objective response or stable disease ≥6 months. Integrated WGTA identifies therapeutically actionable variants in almost all tumors and are directly translatable to clinical care of children with poor prognosis cancers.


Subject(s)
DNA Copy Number Variations , Gene Expression Profiling , Neoplasms , Humans , Child , Neoplasms/genetics , Neoplasms/therapy , Female , Adolescent , Male , Child, Preschool , Prognosis , Gene Expression Profiling/methods , Infant , Transcriptome , Young Adult , Whole Genome Sequencing , Germ-Line Mutation , Mutation , Genome, Human/genetics , Genetic Predisposition to Disease
4.
medRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562786

ABSTRACT

The complexities of cancer genomes are becoming more easily interpreted due to advancements in sequencing technologies and improved bioinformatic analysis. Structural variants (SVs) represent an important subset of somatic events in tumors. While detection of SVs has been markedly improved by the development of long-read sequencing, somatic variant identification and annotation remains challenging. We hypothesized that use of a completed human reference genome (CHM13-T2T) would improve somatic SV calling. Our findings in a tumour/normal matched benchmark sample and two patient samples show that the CHM13-T2T improves SV detection and prioritization accuracy compared to GRCh38, with a notable reduction in false positive calls. We also overcame the lack of annotation resources for CHM13-T2T by lifting over CHM13-T2T-aligned reads to the GRCh38 genome, therefore combining both improved alignment and advanced annotations. In this process, we assessed the current SV benchmark set for COLO829/COLO829BL across four replicates sequenced at different centers with different long-read technologies. We discovered instability of this cell line across these replicates; 346 SVs (1.13%) were only discoverable in a single replicate. We identify 49 somatic SVs, which appear to be stable as they are consistently present across the four replicates. As such, we propose this consensus set as an updated benchmark for somatic SV calling and include both GRCh38 and CHM13-T2T coordinates in our benchmark. The benchmark is available at: 10.5281/zenodo.10819636 Our work demonstrates new approaches to optimize somatic SV prioritization in cancer with potential improvements in other genetic diseases.

5.
Curr Oncol ; 31(4): 1865-1875, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38668043

ABSTRACT

Immune checkpoint inhibitors (ICIs) are increasingly used in the treatment of many tumor types, and durable responses can be observed in select populations. However, patients may exhibit significant immune-related adverse events (irAEs) that may lead to morbidity. There is limited information on whether the presence of specific germline mutations may highlight those at elevated risk of irAEs. We evaluated 117 patients with metastatic solid tumors or hematologic malignancies who underwent genomic analysis through the ongoing Personalized OncoGenomics (POG) program at BC Cancer and received an ICI during their treatment history. Charts were reviewed for irAEs. Whole genome sequencing of a fresh biopsy and matched normal specimens (blood) was performed at the time of POG enrollment. Notably, we found that MHC class I alleles in the HLA-B27 family, which have been previously associated with autoimmune conditions, were associated with grade 3 hepatitis and pneumonitis (q = 0.007) in patients treated with combination PD-1/PD-L1 and CTLA-4 inhibitors, and PD-1 inhibitors in combination with IDO-1 inhibitors. These data highlight that some patients may have a genetic predisposition to developing irAEs.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Male , Neoplasms/drug therapy , Female , Middle Aged , Aged , Germ-Line Mutation , Adult , Aged, 80 and over
6.
PLoS Genet ; 20(3): e1011192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38517939

ABSTRACT

The HostSeq initiative recruited 10,059 Canadians infected with SARS-CoV-2 between March 2020 and March 2023, obtained clinical information on their disease experience and whole genome sequenced (WGS) their DNA. We analyzed the WGS data for genetic contributors to severe COVID-19 (considering 3,499 hospitalized cases and 4,975 non-hospitalized after quality control). We investigated the evidence for replication of loci reported by the International Host Genetics Initiative (HGI); analyzed the X chromosome; conducted rare variant gene-based analysis and polygenic risk score testing. Population stratification was adjusted for using meta-analysis across ancestry groups. We replicated two loci identified by the HGI for COVID-19 severity: the LZTFL1/SLC6A20 locus on chromosome 3 and the FOXP4 locus on chromosome 6 (the latter with a variant significant at P < 5E-8). We found novel significant associations with MRAS and WDR89 in gene-based analyses, and constructed a polygenic risk score that explained 1.01% of the variance in severe COVID-19. This study provides independent evidence confirming the robustness of previously identified COVID-19 severity loci by the HGI and identifies novel genes for further investigation.


Subject(s)
COVID-19 , North American People , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Canada/epidemiology , Genome-Wide Association Study , Membrane Transport Proteins , Forkhead Transcription Factors
8.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37961641

ABSTRACT

Human papillomavirus (HPV) integration has been implicated in transforming HPV infection into cancer, but its genomic consequences have been difficult to study using short-read technologies. To resolve the dysregulation associated with HPV integration, we performed long-read sequencing on 63 cervical cancer genomes. We identified six categories of integration events based on HPV-human genomic structures. Of all HPV integrants, defined as two HPV-human breakpoints bridged by an HPV sequence, 24% contained variable copies of HPV between the breakpoints, a phenomenon we termed heterologous integration. Analysis of DNA methylation within and in proximity to the HPV genome at individual integration events revealed relationships between methylation status of the integrant and its orientation and structure. Dysregulation of the human epigenome and neighboring gene expression in cis with the HPV-integrated allele was observed over megabase-ranges of the genome. By elucidating the structural, epigenetic, and allele-specific impacts of HPV integration, we provide insight into the role of integrated HPV in cervical cancer.

9.
Clin Transl Radiat Oncol ; 43: 100689, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37867612

ABSTRACT

Objective: To investigate the potential to reduce the cochlear dose with robotic photon radiosurgery or intensity-modulated proton therapy planning for vestibular schwannomas. Materials and Methods: Clinically delivered photon radiosurgery treatment plans were compared to five cochlear-optimized plans: one photon and four proton plans (total of 120). A 1x12 Gy dose was prescribed. Photon plans were generated with Precision (Cyberknife, Accuray) with no PTV margin for set-up errors. Proton plans were generated using an in-house automated multi-criterial planning system with three or nine-beam arrangements, and applying 0 or 3 mm robustness for set-up errors during plan optimization and evaluation (and 3 % range robustness). The sample size was calculated based on a reduction of cochlear Dmean > 1.5 Gy(RBE) from the clinical plans, and resulted in 24 patients. Results: Compared to the clinical photon plans, a reduction of cochlear Dmean > 1.5 Gy(RBE) could be achieved in 11/24 cochlear-optimized photon plans, 4/24 and 6/24 cochlear-optimized proton plans without set-up robustness for three and nine-beam arrangement, respectively, and in 0/24 proton plans with set-up robustness. The cochlea could best be spared in cases with a distance between tumor and cochlea. Using nine proton beams resulted in a reduced dose to most organs at risk. Conclusion: Cochlear dose reduction is possible in vestibular schwannoma radiosurgery while maintaining tumor coverage, especially when the tumor is not adjacent to the cochlea. With current set-up robustness, proton therapy is capable of providing lower dose to organs at risk located distant to the tumor, but not for organs adjacent to it. Consequently, photon plans provided better cochlear sparing than proton plans.

10.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37875130

ABSTRACT

Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.


Subject(s)
Picea , Phylogeny , Picea/genetics , North America
11.
NPJ Precis Oncol ; 7(1): 73, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37558751

ABSTRACT

Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Scorehi) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment.

12.
Phys Med Biol ; 68(17)2023 08 23.
Article in English | MEDLINE | ID: mdl-37494944

ABSTRACT

Objective. The Dutch proton robustness evaluation protocol prescribes the dose of the clinical target volume (CTV) to the voxel-wise minimum (VWmin) dose of 28 scenarios. This results in a consistent but conservative near-minimum CTV dose (D98%,CTV). In this study, we analyzed (i) the correlation between VWmin/voxel-wise maximum (VWmax) metrics and actually delivered dose to the CTV and organs at risk (OARs) under the impact of treatment errors, and (ii) the performance of the protocol before and after its calibration with adequate prescription-dose levels.Approach. Twenty-one neuro-oncological patients were included. Polynomial chaos expansion was applied to perform a probabilistic robustness evaluation using 100,000 complete fractionated treatments per patient. Patient-specific scenario distributions of clinically relevant dosimetric parameters for the CTV and OARs were determined and compared to clinical VWmin and VWmax dose metrics for different scenario subsets used in the robustness evaluation protocol.Main results. The inclusion of more geometrical scenarios leads to a significant increase of the conservativism of the protocol in terms of clinical VWmin and VWmax values for the CTV and OARs. The protocol could be calibrated using VWmin dose evaluation levels of 93.0%-92.3%, depending on the scenario subset selected. Despite this calibration of the protocol, robustness recipes for proton therapy showed remaining differences and an increased sensitivity to geometrical random errors compared to photon-based margin recipes.Significance. The Dutch proton robustness evaluation protocol, combined with the photon-based margin recipe, could be calibrated with a VWmin evaluation dose level of 92.5%. However, it shows limitations in predicting robustness in dose, especially for the near-maximum dose metrics to OARs. Consistent robustness recipes could improve proton treatment planning to calibrate residual differences from photon-based assumptions.


Subject(s)
Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Protons , Calibration , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk , Proton Therapy/methods
13.
Radiother Oncol ; 186: 109729, 2023 09.
Article in English | MEDLINE | ID: mdl-37301261

ABSTRACT

BACKGROUND AND PURPOSE: In the Netherlands, head-and-neck cancer (HNC) patients are referred for proton therapy (PT) through model-based selection (MBS). However, treatment errors may compromise adequate CTV dose. Our aims are: (i) to derive probabilistic plan evaluation metrics on the CTV consistent with clinical metrics; (ii) to evaluate plan consistency between photon (VMAT) and proton (IMPT) planning in terms of CTV dose iso-effectiveness and (iii) to assess the robustness of the OAR doses and of the risk toxicities involved in the MBS. MATERIALS AND METHODS: Sixty HNC plans (30 IMPT/30 VMAT) were included. A robustness evaluation with 100,000 treatment scenarios per plan was performed using Polynomial Chaos Expansion (PCE). PCE was applied to determine scenario distributions of clinically relevant dosimetric parameters, which were compared between the 2 modalities. Finally, PCE-based probabilistic dose parameters were derived and compared to clinical PTV-based photon and voxel-wise proton evaluation metrics. RESULTS: Probabilistic dose to near-minimum volume v = 99.8% for the CTV correlated best with clinical PTV-D98% and VWmin-D98%,CTV doses for VMAT and IMPT respectively. IMPT showed slightly higher nominal CTV doses, with an average increase of 0.8 GyRBE in the median of the D99.8%,CTV distribution. Most patients qualified for IMPT through the dysphagia grade II model, for which an average NTCP gain of 10.5 percentages points (%-point) was found. For all complications, uncertainties resulted in moderate NTCP spreads lower than 3 p.p. on average for both modalities. CONCLUSION: Despite the differences between photon and proton planning, the comparison between PTV-based VMAT and robust IMPT is consistent. Treatment errors had a moderate impact on NTCPs, showing that the nominal plans are a good estimator to qualify patients for PT.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Uncertainty , Protons , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/etiology , Radiotherapy Dosage , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
14.
J Thorac Oncol ; 18(11): 1594-1606, 2023 11.
Article in English | MEDLINE | ID: mdl-37390980

ABSTRACT

INTRODUCTION: Increased DNA damage triggered through poly (ADP-ribose) polymerase inhibition may modify tumor immunogenicity, sensitizing tumors to immunotherapy. ORION (NCT03775486) evaluated the combination of olaparib with durvalumab as maintenance therapy in patients with metastatic NSCLC. METHODS: ORION is a phase 2, randomized, multicenter, double-blind, international study. Patients with metastatic NSCLC (without activating EGFR or ALK aberrations) and Eastern Cooperative Oncology Group performance status of 0 or 1 were enrolled to receive initial therapy with durvalumab (1500 mg intravenously; every 3 wk) plus platinum-based chemotherapy for four cycles. Patients without disease progression were then randomized (1:1) to maintenance durvalumab (1500 mg; every 4 wk) plus either olaparib (300 mg orally) or placebo (both twice daily); randomization was stratified by objective response during initial therapy and tumor histologic type. The primary end point was investigator-assessed progression-free survival (PFS) (Response Evaluation Criteria in Solid Tumors version 1.1). RESULTS: Between January 2019 and February 2020, 269 of 401 patients who received initial therapy were randomized. As of January 11, 2021 (median follow-up: 9.6 mo), median PFS was 7.2 months (95% confidence interval: 5.3-7.9) with durvalumab plus olaparib versus 5.3 months (3.7-5.8) with durvalumab plus placebo (hazard ratio = 0.76, 95% confidence interval: 0.57-1.02, p = 0.074). Safety findings were consistent with the known profiles of durvalumab and olaparib. Anemia was the most common adverse event (AE) with durvalumab plus olaparib (26.1% versus 8.2% with durvalumab plus placebo). The incidence of grade 3 or 4 AEs (34.3% versus 17.9%) and AEs leading to treatment discontinuation (10.4% versus 4.5%) was numerically higher with durvalumab plus olaparib versus durvalumab plus placebo. CONCLUSIONS: Maintenance therapy with durvalumab in combination with olaparib was not associated with a statistically significant improvement in PFS versus durvalumab alone, although numerical improvement was observed.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Lung Neoplasms , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Lung Neoplasms/etiology , Antibodies, Monoclonal/adverse effects , Phthalazines/therapeutic use
15.
Nat Commun ; 14(1): 3062, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244935

ABSTRACT

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Histones/genetics , Histones/metabolism , Glioblastoma/metabolism , Gene Expression Regulation, Neoplastic , Chromatin/metabolism , Epigenesis, Genetic , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism
16.
Neuro Oncol ; 25(10): 1763-1774, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37186014

ABSTRACT

BACKGROUND: Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs). METHODS: Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin. RESULTS: NPCs divided abnormally in defined media containing PDGFA with P53-dependent effects. In wild-type cells, defective mitosis was associated with P53 activation and cell death, but in some null cells, defective mitosis was tolerated. Surviving cells had unstable genomes and proliferated in the presence of PDGFA accumulating random and clonal chromosomal rearrangements. The outcome of this process was a population of tumorigenic NPCs with recurrent gains and losses of chromosomal regions that were syntenic to those recurrently gained and lost in human GBM. By stimulating proliferation without setting the stage for successful mitosis, PDGFA-transformed NPCs lacking P53 function. CONCLUSIONS: Our work describes a mechanism of transformation of NPCs by a brain-associated mitogen, raising the possibility that the unique genomic architecture of GBM is an adaptation to defective mitosis that ensures the survival of affected cells.


Subject(s)
Glioblastoma , Neural Stem Cells , Humans , Animals , Mice , Mitogens/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Mitosis , Neural Stem Cells/pathology , Glioblastoma/pathology
17.
Oncogene ; 42(22): 1857-1873, 2023 06.
Article in English | MEDLINE | ID: mdl-37095257

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Humans , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostate/metabolism , DNA Damage/genetics , Transforming Growth Factor beta/genetics , Eye Proteins/metabolism , Transcription Factors/genetics
18.
Radiother Oncol ; 184: 109674, 2023 07.
Article in English | MEDLINE | ID: mdl-37084885

ABSTRACT

OBJECTIVE: The interpretation of new enhancing lesions after radiotherapy for diffuse glioma remains a clinical challenge. We sought to characterize and classify new contrast enhancing lesions in a historical multicenter cohort of patients with IDH mutated grade 2 diffuse glioma treated with photon therapy. METHODS: We reviewed all follow-up MRI's of all patients treated with radiotherapy for histologically confirmed, IDH mutated diffuse grade 2 glioma between 1-1-2007 and 31-12-2018 in two tertiary referral centers. Disease progression (PD) was defined in accordance with the RANO criteria for progressive disease in low grade glioma. Pseudoprogression (psPD) was defined as any transient contrast-enhancing lesion between the end of radiotherapy and PD, or any new contrast-enhancing lesion that remained stable over a period of 12 months in patients who did not exhibit PD. RESULTS: A total of 860 MRI's of 106 patients were reviewed. psPD was identified in 24 patients (23%) on 76 MRI's. The cumulative incidence of psPD was 13% at 1 year, 22% at 5 years, and 28% at 10 years. The mean of the observed maximal volume of psPD was 2.4 cc. The median Dmin in psPD lesions was 50.1 Gy. The presence of an 1p/19q codeletion was associated with an increased risk of psPD (subhazard ratio 2.34, p = 0.048). psPD was asymptomatic in 83% of patients. CONCLUSION: The cumulative incidence of psPD in grade 2 diffuse glioma increases over time. Consensus regarding event definition and statistical analysis is needed for comparisons between series investigating psPD.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Glioma/genetics , Glioma/radiotherapy , Glioma/pathology , Magnetic Resonance Imaging , Disease Progression , Mutation , Isocitrate Dehydrogenase/genetics , Multicenter Studies as Topic
19.
NPJ Precis Oncol ; 7(1): 31, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36964191

ABSTRACT

There is emerging evidence about the predictive role of homologous recombination deficiency (HRD), but this is less defined in gastrointestinal (GI) and thoracic malignancies. We reviewed whole genome (WGS) and transcriptomic (RNA-Seq) data from advanced GI and thoracic cancers in the Personalized OncoGenomics trial (NCT02155621) to evaluate HRD scores and single base substitution (SBS)3, which is associated with BRCA1/2 mutations and potentially predictive of defective HRD. HRD scores were calculated by sum of loss of heterozygosity, telomeric allelic imbalance, and large-scale state transitions scores. Regression analyses examined the association between HRD and time to progression on platinum (TTPp). We included 223 patients with GI (n = 154) or thoracic (n = 69) malignancies. TTPp was associated with SBS3 (p < 0.01) but not HRD score in patients with GI malignancies, whereas neither was associated with TTPp in thoracic malignancies. Tumors with gBRCA1/2 mutations and a somatic second alteration exhibited high SBS3 and HRD scores, but these signatures were also present in several tumors with germline but no somatic second alterations, suggesting silencing of the wild-type allele or BRCA1/2 haploinsufficiency. Biallelic inactivation of an HR gene, including loss of XRCC2 and BARD1, was identified in BRCA1/2 wild-type HRD tumors and these patients had prolonged response to platinum. Thoracic cases with high HRD score were associated with high RECQL5 expression (p ≤ 0.025), indicating another potential mechanism of HRD. SBS3 was more strongly associated with TTPp in patients with GI malignancies and may be complementary to using HRD and BRCA status in identifying patients who benefit from platinum therapy.

20.
NPJ Precis Oncol ; 7(1): 27, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914848

ABSTRACT

Specific classes of DNA damage repair (DDR) defect can drive sensitivity to emerging therapies for metastatic prostate cancer. However, biomarker approaches based on DDR gene sequencing do not accurately predict DDR deficiency or treatment benefit. Somatic alteration signatures may identify DDR deficiency but historically require whole-genome sequencing of tumour tissue. We assembled whole-exome sequencing data for 155 high ctDNA fraction plasma cell-free DNA and matched leukocyte DNA samples from patients with metastatic prostate or bladder cancer. Labels for DDR gene alterations were established using deep targeted sequencing. Per sample mutation and copy number features were used to train XGBoost ensemble models. Naive somatic features and trinucleotide signatures were associated with specific DDR gene alterations but insufficient to resolve each class. Conversely, XGBoost-derived models showed strong performance including an area under the curve of 0.99, 0.99 and 1.00 for identifying BRCA2, CDK12, and mismatch repair deficiency in metastatic prostate cancer. Our machine learning approach re-classified several samples exhibiting genomic features inconsistent with original labels, identified a metastatic bladder cancer sample with a homozygous BRCA2 copy loss, and outperformed an existing exome-based classifier for BRCA2 deficiency. We present DARC Sign (DnA Repair Classification SIGNatures); a public machine learning tool leveraging clinically-practical liquid biopsy specimens for simultaneously identifying multiple types of metastatic prostate cancer DDR deficiencies. We posit that it will be useful for understanding differential responses to DDR-directed therapies in ongoing clinical trials and may ultimately enable prospective identification of prostate cancers with phenotypic evidence of DDR deficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...