Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 349: 140935, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086450

ABSTRACT

We analysed the hydrogeochemical and isotopic contents in groundwater for the period 2002-2020, in the Ischia Island, a volcanic island in Southern Italy, and compared them with seismic events that occurred in the same period. The study is based on a large hydrochemical database, which includes chemical (major and minor compounds, metals and trace elements) and isotopic analyses (δ18O and δ2H). For each of the 34 seismic events occurred in the studied period, we considered coordinates, date, time, depth and magnitude. To exclude the influence of meteorological variability on the hydrochemistry, we examined rainfall time series measured in four stations located in the island. Results show hydrogeochemical anomalies for some chemical elements observed months before the seismic events. Arsenic, electrical conductivity, chromium and vanadium have been identified as potentially affected by hydrogeochemical anomalies related to the earthquakes. The variations in stable isotopes (δ2H and δ18O) in groundwater also seem associated with the earthquakes. This study aims to contribute to the individuation of components in groundwater prone to register sudden changes related to seismic events and it highlights the need of a continuous and long-term hydrogeochemical monitoring in seismic areas. Indeed, the conclusions of this study must be further confirmed by a future continuous monitoring of major compounds, trace elements and isotopes in groundwater to evaluate the effective temporal coincidence/lag with the seismic events.


Subject(s)
Groundwater , Trace Elements , Water Pollutants, Chemical , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Groundwater/chemistry , Isotopes/analysis
2.
J Environ Manage ; 340: 117958, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37116412

ABSTRACT

Groundwater resources in mountain areas are strategically important to maintain adequate water supply for domestic uses, farming, industrial activities, and energy production, also considering the expected growing demand due to ongoing climate changes. Within this framework, the objective of the study is to develop a regional approach, compliant with the European requirements of the Water Framework Directive 2000/60/EC and Groundwater Directive 2006/118/EC, that could support public agencies and water companies to efficiently manage and protect the available water resources in mountainous environments. The proposed approach identifies and delineates groundwater bodies by coupling a 3D hydro-stratigraphic model with the definition of the water budget and water hydrochemical fingerprints in a geologically complex Alpine environment in Northern Italy. Sixteen groundwater bodies (GWBs) have been identified all over the 10.290 km2 area, showing an average storage capacity of more than 500 Mm³ y-1 (about 3% of the average total inflow from precipitation and snowmelt), with differences up to four times between GWBs mainly constituted of carbonate rocks and those prevalently composed of crystalline or terrigenous rocks. Groundwater quality in the study domain is generally excellent, with few exceptions due to geogenic (i.e., natural) or anthropogenic sources of contamination. The results of this study show the advantages of coupling 3D hydro-stratigraphic modelling combined with meteorological, hydrological and hydrogeological information, which consist in: i) identifying the most Strategic Storage Reservoir both in terms of quality and storage capacity; ii) evaluating the present ground- and surface water availability; iii) detecting areas of specific interest for implementing groundwater monitoring networks; iv) recognising recharge areas of the most relevant springs, to implement protection strategies of the resource.


Subject(s)
Groundwater , Water , Environmental Monitoring/methods , Models, Theoretical , Groundwater/chemistry , Italy
3.
Sci Total Environ ; 786: 147360, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33964775

ABSTRACT

The study objective was to derive a susceptibility model for shallow landslides that could include process-related non-stationary variables, to be adaptable to climate changes. We selected the territory of the Mont-Emilius and Mont-Cervin Mountain Communities (northern Italy) as the study area. To define summary variables related to landslide predisposing and triggering processes, we investigated the relationships between landslide occurrences and intense rainfall and snowmelt events (period 1991-2020). For landslide susceptibility mapping, we set up a Generalized Additive Model. We defined a reference model through variable penalization (relief, NDVI, land cover and geology predictors). Similarly, we optimized a model including the climate variables, checking their smooth functions to ensure physical plausibility. Finally, we validated the optimized model through a k-fold cross-validation and performed an evaluation based on contingency tables, area under the receiver operating characteristic curve (AUROC) and variable importance (decrease in explained variance). The climate variables that resulted as being statistically and physically significant are the effective annual number of rainfall events with intensity-duration characteristics above a defined threshold (EATean) and the average number of melting events occurring in a hydrological year (MEn). In the optimized model, EATean and MEn accounted for 5% of the explained deviance. Compared to the reference model, their introduction led to an increase in true positive rate and AUROC of 2.4% and 0.8%, respectively. Also, their inclusion caused a transition of the vulnerability class in 11.0% of the study area. The k-fold validation confirmed the statistical significance and physical plausibility of the meteorological variables in 74% (EATean) and 93% (MEn) of the fitted models. Our results demonstrate the validity of the proposed approach to introduce process-related, non-stationary, physically-plausible climate variables within a shallow landslide susceptibility analysis. Not only do the variables improve the model performance, but they make it adaptable to map the future evolution of landslide susceptibility including climate changes.

4.
J Contam Hydrol ; 238: 103774, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33626464

ABSTRACT

In the densely urbanised Milan Metropolitan area (northern Italy), the long history of anthropogenic activities still exerts a significant pressure on groundwater resource. One of the most serious threats to the water quality of urban aquifers is attributed to diffuse contamination, which is caused by a series of unknown small sources (i.e., multiple point sources) distributed over large areas. In the study area and in many industrialised regions of the world, tetrachloroethylene [PCE], trichloroethylene [TCE] and hexavalent chromium [Cr(VI)] represent the common example of long-standing and persistent pollution in groundwater. In the Milan Metropolitan area, high levels of PCE + TCE and Cr(VI) were detected in the shallow aquifer as well as in the deep aquifer. To assess and map the shallow and deep aquifers susceptibility to PCE + TCE and Cr(VI) contamination at a regional scale, the Weights of Evidence modelling technique has been applied. This method has been used to objectively evaluate the spatial correlation between the high presence of these pollutants in each aquifer and hydrogeological and land use factors that can potentially influence the contamination. Moreover, the results allowed us to quantify on a large scale the effect that preferential flowpaths, due to both thickness variation in the aquitard and the areal density of multi aquifer wells, have in reducing the protection of the underlying deep aquifer. The end-products of the study constitute a key tool to be used by water-resource managers and decision-makers for the improvement of groundwater management and protection strategies.


Subject(s)
Groundwater , Tetrachloroethylene , Trichloroethylene , Water Pollutants, Chemical , Environmental Monitoring , Italy , Trichloroethylene/analysis , Water Pollutants, Chemical/analysis
5.
J Environ Manage ; 187: 365-374, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27836560

ABSTRACT

Water scarcity and associated risks are serious societal problems. A major challenge for the future will be to ensure the short-term and long-term provision of accessible and safe freshwater to meet the needs of the rapidly growing human population and changes in land cover and land use, where conservation and protection play a key role. Through a Bayesian spatial statistical method, a time-dependent approach for groundwater vulnerability assessment is developed to account for both the recent status of groundwater contamination and its evolution, as required by the European Union (Groundwater Directive, 2006/118/EC). This approach combines natural and anthropogenic factors to identify areas with a critical combination of high levels and increasing trends of nitrate concentrations, together with a quantitative evaluation of how different future scenarios would impact the quality of groundwater resources in a given area. In particular, the proposed approach can determine potential impacts on groundwater resources if policies are maintained at the status quo or if new measures are implemented for safeguarding groundwater quality, as natural factors are changing under climatic or anthropogenic stresses.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Pollutants, Chemical/chemistry , Water Supply , Bayes Theorem , Conservation of Natural Resources , Forecasting , Humans , Italy , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL