Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 19(3): 369-386, 2019 03.
Article in English | MEDLINE | ID: mdl-30840503

ABSTRACT

The limitations placed upon human explorers on the surface of Mars will necessitate a methodology for scientific exploration that is different from standard approaches to terrestrial fieldwork and prior crewed exploration of the Moon. In particular, the data transmission limitations and communication latency between Earth and Mars create a unique situation for surface crew in contact with a terrestrial science team. The BASALT research program simulated a series of extravehicular activities (EVAs) in Mars analog terrains under various Mars-relevant bandwidth and latency conditions to investigate how best to approach this problem. Here we discuss tactical decision-making under these conditions, that is, how the crew on Mars interacts with a team of scientists and support personnel on Earth to collect samples of maximum scientific interest. We describe the strategies, protocols, and tools tested in BASALT EVAs and give recommendations on how best to conduct human exploration of Mars with support from Earth-based scientists. We find that even with scientists supporting them, the crew performing the exploration must be trained in the appropriate scientific disciplines in order to provide the terrestrial scientists with enough information to make decisions, but that with appropriate planning and structure, and tools such as a "dynamic leaderboard," terrestrial scientists can add scientific value to an EVA, even under Mars communication latency.


Subject(s)
Astronauts/psychology , Communication , Decision Making , Mars , Satellite Communications , Earth, Planet , Exobiology/methods , Extraterrestrial Environment , Humans , Spacecraft , Time Factors
2.
Astrobiology ; 19(3): 321-346, 2019 03.
Article in English | MEDLINE | ID: mdl-30840507

ABSTRACT

The Biologic Analog Science Associated with Lava Terrains (BASALT) research project is investigating tools, techniques, and strategies for conducting Mars scientific exploration extravehicular activity (EVA). This has been accomplished through three science-driven terrestrial field tests (BASALT-1, BASALT-2, and BASALT-3) during which the iterative development, testing, assessment, and refinement of concepts of operations (ConOps) and capabilities were conducted. ConOps are the instantiation of operational design elements that guide the organization and flow of personnel, communication, hardware, software, and data products to enable a mission concept. Capabilities include the hardware, software, data products, and protocols that comprise and enable the ConOps. This paper describes the simulation quality and acceptability of the Mars-forward ConOps evaluated during BASALT-2. It also presents the level of mission enhancement and acceptability of the associated Mars-forward capabilities. Together, these results inform science operations for human planetary exploration.


Subject(s)
Exobiology/methods , Extravehicular Activity , Mars , Operations Research , Space Simulation/methods , Exobiology/instrumentation , Humans , Space Simulation/instrumentation
3.
Astrobiology ; 19(3): 387-400, 2019 03.
Article in English | MEDLINE | ID: mdl-30840508

ABSTRACT

During the BASALT research program, real (nonsimulated) geological and biological science was accomplished through a series of extravehicular activities (EVAs) under simulated Mars mission conditions. These EVAs were supported by a Mission Support Center (MSC) that included an on-site, colocated Science Support Team (SST). The SST was composed of scientists from a variety of disciplines and operations researchers who provided scientific and technical expertise to the crew while each EVA was being conducted (intra-EVA). SST management and organization developed under operational conditions that included Mars-like communication latencies, bandwidth constraints, and EVA plans that were infused with Mars analog field science objectives. This paper focuses on the SST workspace considerations such as science team roles, physical layout, communication interactions, operational techniques, and work support technology. Over the course of BASALT field deployments to Idaho and Hawai'i, the SST team made several changes of note to increase both productivity and efficiency. For example, new roles were added for more effective management of technical discussions, and the layout of the SST workspace evolved multiple times during the deployments. SST members' reflexive adjustments resulted in a layout that prioritized face-to-face discussions over face-to-data displays, highlighting the importance of interpersonal communication during SST decision-making. In tandem with these workspace adjustments, a range of operational techniques were developed to help the SST manage discussions and information flow under time pressure.


Subject(s)
Astronauts/psychology , Extravehicular Activity , Mars , Space Simulation/methods , Communication , Decision Making , Decision Support Techniques , Efficiency , Hawaii , Humans , Idaho , Interpersonal Relations , Satellite Communications , Space Simulation/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...