Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Veg Hist Archaeobot ; 33(4): 503-518, 2024.
Article in English | MEDLINE | ID: mdl-38803353

ABSTRACT

Cannabis grains are frequently reported from archaeological sites in Asia, and hypothesized centers of origins are China and Central Asia. Chinese early cannabis remains are often interpreted as evidence of hemp fabric production, in line with early textual evidence describing ritualistic hemp cloth use and hemp cultivation as a grain crop. Modern measurements on cannabis varieties show distinct sizes between fibre or oil/fibre and psychoactive varieties, the former having larger seeds on average than the latter. This paper reviews the current macro-botanical evidence for cannabis across East, Central and South Asia and builds a comparative framework based on modern cannabis seed measurements to help identify cannabis use in the past, through the metric analysis of archaeologically preserved seeds. Over 800 grains of cannabis were retrieved from the 2008 excavation of Haimenkou, Yunnan, Southwest China, dating to between 1650 and 400 bc. These are compared with other known archaeological cannabis and interpreted through the metric framework. This offers a basis for exploration of the seed morphometrics potential to infer cannabis cultivation and diversification in uses. At Haimenkou, cannabis seeds size mostly plot in the range of overlapping psychoactive/fibre types; we therefore suggest that the cannabis assemblage from Haimenkou is indicative of a crop beginning to undergo evolution from its early domesticated form towards a diversified crop specialized for alternative uses, including larger oilseed/fibre adapted varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s00334-023-00966-6.

2.
Sci Adv ; 8(38): eadc9171, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36129978

ABSTRACT

The adoption of rice farming during the first millennium BC was a turning point in Japanese prehistory, defining the subsequent cultural, linguistic, and genetic variation in the archipelago. Here, we use a suite of novel Bayesian techniques to estimate the regional rates of dispersal and arrival time of rice farming using radiocarbon dates on charred rice remains. Our results indicate substantial variations in the rate of dispersal of rice within the Japanese islands, hinting at the presence of a mixture of demic and cultural diffusion, geographic variations in the suitability of its cultivation, and the possible role of existing social networks in facilitating or hindering the adoption of the new subsistence economy.

3.
J Theor Biol ; 537: 111004, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35031310

ABSTRACT

Most models of selection incorporate some notion of environmental degradation where the majority of the population becomes less fit concerning a character resulting in pressure to adapt. Such models have been variously associated with an adaptation cost, the substitution load. Conversely, adaptative mutations that represent an improvement in fitness in the absence of environmental change have generally been assumed to be associated with negligible cost. However, such adaptations could represent a competitive advantage that diminishes resource availability for others and so induces a cost. This type of adaptation in the form of seedling competition has been suggested as a mechanism for increases in seed sizes during domestication, a trait associated with the standard stabilizing selection model. We present a novel cost framework for competitive selection that demonstrates significant differences in behaviour to environmental-based selection in intensity, intensity over time and directly contrasts with the expectations of the standard model. Grain metrics of nine archaeological crops fit a mixed model in which episodes of competitive selection often emerge from shifting optimum episodes of stabilizing selection, highlighting the potential prevalence of the mechanism outlined here and providing fundamental insight into the factors driving domestication.


Subject(s)
Domestication , Multifactorial Inheritance , Crops, Agricultural/genetics , Phenotype , Seeds
4.
Trends Ecol Evol ; 37(3): 268-279, 2022 03.
Article in English | MEDLINE | ID: mdl-34863580

ABSTRACT

The evidence from ancient crops over the past decade challenges some of our most basic assumptions about the process of domestication. The emergence of crops has been viewed as a technologically progressive process in which single or multiple localized populations adapt to human environments in response to cultivation. By contrast, new genetic and archaeological evidence reveals a slow process that involved large populations over wide areas with unexpectedly sustained cultural connections in deep time. We review evidence that calls for a new landscape framework of crop origins. Evolutionary processes operate across vast distances of landscape and time, and the origins of domesticates are complex. The domestication bottleneck is a redundant concept and the progressive nature of domestication is in doubt.


Subject(s)
Agriculture , Domestication , Archaeology , Biological Evolution , Crops, Agricultural/genetics , Humans
5.
Mol Biol Evol ; 38(10): 4419-4434, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34157722

ABSTRACT

Understanding the evolutionary history of crops, including identifying wild relatives, helps to provide insight for conservation and crop breeding efforts. Cultivated Brassica oleracea has intrigued researchers for centuries due to its wide diversity in forms, which include cabbage, broccoli, cauliflower, kale, kohlrabi, and Brussels sprouts. Yet, the evolutionary history of this species remains understudied. With such different vegetables produced from a single species, B. oleracea is a model organism for understanding the power of artificial selection. Persistent challenges in the study of B. oleracea include conflicting hypotheses regarding domestication and the identity of the closest living wild relative. Using newly generated RNA-seq data for a diversity panel of 224 accessions, which represents 14 different B. oleracea crop types and nine potential wild progenitor species, we integrate phylogenetic and population genetic techniques with ecological niche modeling, archaeological, and literary evidence to examine relationships among cultivars and wild relatives to clarify the origin of this horticulturally important species. Our analyses point to the Aegean endemic B. cretica as the closest living relative of cultivated B. oleracea, supporting an origin of cultivation in the Eastern Mediterranean region. Additionally, we identify several feral lineages, suggesting that cultivated plants of this species can revert to a wild-like state with relative ease. By expanding our understanding of the evolutionary history in B. oleracea, these results contribute to a growing body of knowledge on crop domestication that will facilitate continued breeding efforts including adaptation to changing environmental conditions.


Subject(s)
Brassica , Plant Breeding , Biological Evolution , Brassica/genetics , Crops, Agricultural/genetics , Phylogeny
6.
Nat Plants ; 5(11): 1120-1128, 2019 11.
Article in English | MEDLINE | ID: mdl-31685951

ABSTRACT

Tetraploid emmer wheat (Triticum turgidum ssp. dicoccon) is a progenitor of the world's most widely grown crop, hexaploid bread wheat (Triticum aestivum), as well as the direct ancestor of tetraploid durum wheat (T. turgidum subsp. turgidum). Emmer was one of the first cereals to be domesticated in the old world; it was cultivated from around 9700 BC in the Levant1,2 and subsequently in south-western Asia, northern Africa and Europe with the spread of Neolithic agriculture3,4. Here, we report a whole-genome sequence from a museum specimen of Egyptian emmer wheat chaff, 14C dated to the New Kingdom, 1130-1000 BC. Its genome shares haplotypes with modern domesticated emmer at loci that are associated with shattering, seed size and germination, as well as within other putative domestication loci, suggesting that these traits share a common origin before the introduction of emmer to Egypt. Its genome is otherwise unusual, carrying haplotypes that are absent from modern emmer. Genetic similarity with modern Arabian and Indian emmer landraces connects ancient Egyptian emmer with early south-eastern dispersals, whereas inferred gene flow with wild emmer from the Southern Levant signals a later connection. Our results show the importance of museum collections as sources of genetic data to uncover the history and diversity of ancient cereals.


Subject(s)
Domestication , Genome, Plant , Triticum/genetics , DNA, Plant , Edible Grain/history , Egypt , History, Ancient , Phylogeny , Sequence Analysis, DNA
7.
PLoS One ; 14(7): e0218751, 2019.
Article in English | MEDLINE | ID: mdl-31318871

ABSTRACT

The reasons and processes that led hunter-gatherers to transition into a sedentary and agricultural way of life are a fundamental unresolved question of human history. Here we present results of excavations of two single-occupation early Neolithic sites (dated to 7.9 and 7.4 ka) and two high-resolution archaeological surveys in northeast China, which capture the earliest stages of sedentism and millet cultivation in the second oldest center of domestication in the Old World. The transition to sedentism coincided with a significant transition to wetter conditions in north China, at 8.1-7.9 ka. We suggest that these wetter conditions were an empirical precondition that facilitated the complex transitional process to sedentism and eventually millet domestication in north China. Interestingly, sedentism and plant domestication followed different trajectories. The sedentary way of life and cultural norms evolved rapidly, within a few hundred years, we find complex sedentary villages inhabiting the landscape. However, the process of plant domestication, progressed slowly over several millennia. Our earliest evidence for the beginning of the domestication process appear in the context of an already complex sedentary village (late Xinglongwa culture), a half millennia after the onset of cultivation, and even in this phase domesticated plants and animals were rare, suggesting that the transition to domesticated (sensu stricto) plants in affluent areas might have not played a substantial role in the transition to sedentary societies.


Subject(s)
Agriculture/history , Archaeology/history , Domestication , Animals , China , Crops, Agricultural/history , Edible Grain/history , History, Ancient , Humans , Millets/growth & development
8.
Veg Hist Archaeobot ; 28(3): 263-282, 2019.
Article in English | MEDLINE | ID: mdl-31118541

ABSTRACT

The transition to urbanism has long focused on annual staple crops (cereals and legumes), perhaps at the expense of understanding other changes within agricultural practices that occurred between the end of the initial domestication period and urbanisation. This paper examines the domestication and role of fruit tree crops within urbanisation in both Western Asia and China, using a combination of evidence for morphological change and a database that documents both the earliest occurrence of tree fruit crops and their spread beyond their wild range. In Western Asia the domestication of perennial fruit crops likely occurs between 6500 bc and 3500 bc, although it accompanies a shift in location from that of the earliest domestications within the Fertile Crescent to Mesopotamia, where the earliest urban societies arose. For China, fruit-tree domestication dates between ca 4000 and 2500 bc, commencing after millet domestication and rice domestication in Northern and Southern China, respectively, but within the period that led up to the urban societies that characterised the Longshan period in the Yellow River basin and the Liangzhu Culture in the Lower Yangtze. These results place the domestication of major fruit trees between the end of the domestication of staple annual crops and the rise of urbanism. On this basis it is argued that arboriculture played a fundamental role within the re-organisation of existing land use, shifting the emphasis from short-term returns of cereal crops into longer term investment in the developing agricultural landscape in both Western and East Asia. In this respect perennial tree crops can be placed alongside craft specialisation, such as metallurgy and textiles, in the formation of urban centres and the shaping the organisational administration that accompanied the rise of urbanism.

9.
Sustain Sci ; 13(1): 119-128, 2018.
Article in English | MEDLINE | ID: mdl-30147774

ABSTRACT

To what degree is cultural multi-level selection responsible for the rise of environmentally transformative human behaviors? And vice versa? From the clearing of vegetation using fire to the emergence of agriculture and beyond, human societies have increasingly sustained themselves through practices that enhance environmental productivity through ecosystem engineering. At the same time, human societies have increased in scale and complexity from mobile bands of hunter-gatherers to telecoupled world systems. We propose that these long-term changes are coupled through positive feedbacks among social and environmental changes, coevolved primarily through selection acting at the group level and above, and that this can be tested by combining archeological evidence with mechanistic experiments using an agent-based virtual laboratory (ABVL) approach. A more robust understanding of whether and how cultural multi-level selection couples human social change with environmental transformation may help in addressing the long-term sustainability challenges of the Anthropocene.

10.
Sci Rep ; 7(1): 2038, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28515424

ABSTRACT

A single split-ring resonator (SRR) probe for 2D surface mapping and imaging of relative dielectric permittivity for the characterisation of composite materials has been developed. The imaging principle, the analysis and the sensitivity of the SRR surface dielectric probe data is described. The surface dielectric properties of composite materials in the frequency range 1-3 GHz have been measured based on the magnetic resonance frequency of the transmission loss of the SRR dielectric probe when in contact with the surface. The SRR probe performance was analysed analytically and using full-wave simulation, and predictions showed close agreement with experiment for composite materials with spatially varying dielectric permittivity manufactured by 3D printing. The spatial and permittivity resolution of the SRR dielectric probe were controlled by the geometrical parameters of the SRR which provided flexibility to tune the SRR probe. The best accuracy of the dielectric permittivity measurements was within 5%.

11.
Holocene ; 26(10): 1541-1555, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27942165

ABSTRACT

The period from the late third millennium BC to the start of the first millennium AD witnesses the first steps towards food globalization in which a significant number of important crops and animals, independently domesticated within China, India, Africa and West Asia, traversed Central Asia greatly increasing Eurasian agricultural diversity. This paper utilizes an archaeobotanical database (AsCAD), to explore evidence for these crop translocations along southern and northern routes of interaction between east and west. To begin, crop translocations from the Near East across India and Central Asia are examined for wheat (Triticum aestivum) and barley (Hordeum vulgare) from the eighth to the second millennia BC when they reach China. The case of pulses and flax (Linum usitatissimum) that only complete this journey in Han times (206 BC-AD 220), often never fully adopted, is also addressed. The discussion then turns to the Chinese millets, Panicum miliaceum and Setaria italica, peaches (Amygdalus persica) and apricots (Armeniaca vulgaris), tracing their movement from the fifth millennium to the second millennium BC when the Panicum miliaceum reaches Europe and Setaria italica Northern India, with peaches and apricots present in Kashmir and Swat. Finally, the translocation of japonica rice from China to India that gave rise to indica rice is considered, possibly dating to the second millennium BC. The routes these crops travelled include those to the north via the Inner Asia Mountain Corridor, across Middle Asia, where there is good evidence for wheat, barley and the Chinese millets. The case for japonica rice, apricots and peaches is less clear, and the northern route is contrasted with that through northeast India, Tibet and west China. Not all these journeys were synchronous, and this paper highlights the selective long-distance transport of crops as an alternative to demic-diffusion of farmers with a defined crop package.

12.
PLoS One ; 10(9): e0137024, 2015.
Article in English | MEDLINE | ID: mdl-26327225

ABSTRACT

We have compiled an extensive database of archaeological evidence for rice across Asia, including 400 sites from mainland East Asia, Southeast Asia and South Asia. This dataset is used to compare several models for the geographical origins of rice cultivation and infer the most likely region(s) for its origins and subsequent outward diffusion. The approach is based on regression modelling wherein goodness of fit is obtained from power law quantile regressions of the archaeologically inferred age versus a least-cost distance from the putative origin(s). The Fast Marching method is used to estimate the least-cost distances based on simple geographical features. The origin region that best fits the archaeobotanical data is also compared to other hypothetical geographical origins derived from the literature, including from genetics, archaeology and historical linguistics. The model that best fits all available archaeological evidence is a dual origin model with two centres for the cultivation and dispersal of rice focused on the Middle Yangtze and the Lower Yangtze valleys.


Subject(s)
Oryza/growth & development , Archaeology/methods , Asia , Databases, Factual , Geography , Models, Theoretical
13.
Proc Natl Acad Sci U S A ; 111(17): 6147-52, 2014 Apr 29.
Article in English | MEDLINE | ID: mdl-24753577

ABSTRACT

Recent increases in archaeobotanical evidence offer insights into the processes of plant domestication and agricultural origins, which evolved in parallel in several world regions. Many different crop species underwent convergent evolution and acquired domestication syndrome traits. For a growing number of seed crop species, these traits can be quantified by proxy from archaeological evidence, providing measures of the rates of change during domestication. Among domestication traits, nonshattering cereal ears evolved more quickly in general than seed size. Nevertheless, most domestication traits show similarly slow rates of phenotypic change over several centuries to millennia, and these rates were similar across different regions of origin. Crops reproduced vegetatively, including tubers and many fruit trees, are less easily documented in terms of morphological domestication, but multiple lines of evidence outline some patterns in the development of vegecultural systems across the New World and Old World tropics. Pathways to plant domestication can also be compared in terms of the cultural and economic factors occurring at the start of the process. Whereas agricultural societies have tended to converge on higher population densities and sedentism, in some instances cultivation began among sedentary hunter-gatherers whereas more often it was initiated by mobile societies of hunter-gatherers or herder-gatherers.


Subject(s)
Archaeology/history , Biological Evolution , Crops, Agricultural/history , Agriculture/history , Botany/history , Geography , History, Ancient , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...