Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 19981, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968309

ABSTRACT

In this report, the coupling and dispersion characteristics of discrete and coalesced square resonators was investigated in the MHz regime. Resonators with one and three gaps were considered. When the resonators are not in direct contact, the number of gaps has little effect upon the total coupling, which is negative. When the resonators are connected so that they share one side, the coupling can change drastically depending on the number of gaps. In particular, when the shared side has a gap, the total coupling coefficient switches to positive values, making it possible for forward travelling waves to propagate on arrays. Experimental, numerical and analytical data verify this behaviour.

2.
Small ; 18(10): e2105368, 2022 03.
Article in English | MEDLINE | ID: mdl-34989120

ABSTRACT

In this report, a novel fabrication method, based on casting Field's metal inside dielectric molds made via fused deposition modeling, is presented. Fused deposition modeling (FDM) has become one of the most common rapid prototyping methods. Whilst it generally produces good quality mechanical structures in thermoplastics, few reliable methods have been demonstrated that produce good quality 3D electrically conductive structures. By using Field's metal to transform dielectric molds into conductive structures, nearly any continuous metal geometry buried within the polymer can be created, allowing for the realization of complex 3D architectures. A wide range of thermoplastic materials used in fused deposition modeling have been investigated, to identify the best candidates in terms of processing temperature, relative permittivity, and loss tangent. Experimental measurements and X-ray computer tomography scans are used to determine the quality of structures fabricated using this method. Based on these findings, functional metamaterials devices operating at 600-700 MHz with high Q-factors have been produced. This method shows potential to be incorporated into standard FDM setups and could be utilized for the fabrication of curved and 3D geometries.


Subject(s)
Polymers , Printing, Three-Dimensional , Polymers/chemistry , Temperature
3.
Int J Sports Physiol Perform ; 15(6): 892-895, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32023546

ABSTRACT

PURPOSE: The core temperature responses during exercise and effects of different cooling strategies on endurance performance under heat stress have been investigated in recreational athletes. This investigation aimed to determine peak rectal temperatures during elite racewalking competitions and to detail any cooling strategies used. METHODS: Rectal temperature was measured in 14 heat-adapted elite/preelite race walkers (9 females) via a telemetric capsule across 4 outdoor events, including the 2018 Commonwealth Games (race 1: 20 km, 25°C, 74% relative humidity [RH], n = 2) and 3 International Association of Athletics Federations-sanctioned 10-km events (race 2: 19°C, 34% RH, n = 2; race 3: 29°C, 47% RH, n = 14; and race 4: 23°C, 72% RH, n = 11). All athletes completed race 3, and a subsample completed the other events. Their use of cooling strategies and symptoms of heat illness were determined. RESULTS: Peak rectal temperatures >40°C were observed in all events. The highest rectal temperature observed during an event was 41.2°C. These high rectal temperatures were observed without concomitant heat illness, with the exception of cramping in one athlete during race 1. The rectal temperatures tended to reach a steady state in the second half of the 20-km event, but no steady state was observed in the 10-km events. The athletes used cooling strategies in race 1 only, implementing different combinations of cold-water immersion, ice-slurry ingestion, ice-towel application, ice-vest application, and facial water spraying. CONCLUSIONS: Elite/preelite race walkers experience rectal temperatures >40°C during competition despite only moderate-warm conditions, and even when precooling and midcooling strategies are applied.


Subject(s)
Body Temperature Regulation/physiology , Competitive Behavior/physiology , Heat Stress Disorders/prevention & control , Thermotolerance/physiology , Walking/physiology , Adult , Female , Hot Temperature/adverse effects , Humans , Male , Menstrual Cycle/physiology , Young Adult
4.
Sports Med ; 48(3): 525-537, 2018 03.
Article in English | MEDLINE | ID: mdl-29270865

ABSTRACT

Models of endurance performance now recognise input from the brain, including an athlete's ability to cope with various non-pleasurable perceptions during exercise, such as pain and temperature. Exercise training can reduce perceptions of both pain and temperature over time, partly explaining why athletes generally have a higher pain tolerance, despite a similar pain threshold, compared with active controls. Several strategies with varying efficacy may ameliorate the perceptions of pain (e.g. acetaminophen, transcranial direct current stimulation and transcutaneous electrical stimulation) and temperature (e.g. menthol beverages, topical menthol products and other cooling strategies, especially those targeting the head) during exercise to improve athletic performance. This review describes both the theory and practical applications of these interventions in the endurance sport setting, as well as the potentially harmful health consequences of their use.


Subject(s)
Exercise Tolerance/physiology , Exercise , Pain/psychology , Physical Endurance , Temperature , Athletic Performance/physiology , Humans , Perception , Transcranial Direct Current Stimulation
5.
J Sports Sci ; 31(12): 1271-9, 2013.
Article in English | MEDLINE | ID: mdl-23506436

ABSTRACT

This study investigated the effect of ice slurry ingestion during a triathlon on intragastric temperature and 10 km running performance in the heat. Nine well-trained male triathletes performed two randomised trials of a simulated Olympic distance triathlon in hot conditions (32-34°C). Exercise intensity during the swim (1500 m) and cycle (1 hr) legs was standardised, and the 10 km run leg was a self-paced time trial. During the cycle leg, either 10 g · kgBM(-1) of ice slurry (< 1°C) or room temperature fluid (32-34°C) was ingested. In the run leg of the ice slurry trial, performance time (43.4 ± 3.7 vs. 44.6 ± 4.0 min; P = 0.03), intragastric temperature (at 1.5 km; 35.5 ± 1.2 vs. 37.5 ± 0.4°C; P = 0.002) and perceived thermal stress (at 5 km; 73 ± 9 vs. 80 ± 7 mm; P = 0.04) were significantly lower. Oxygen consumption was significantly higher in the ice trial between 9.5-10 km (52.4 ± 3.4 vs. 47.8 ± 5.4 mL · kg(-1) · min(-1); P = 0.04). The results suggest ice slurry ingestion was an effective ergogenic aid for triathlon running performance in the heat. The attenuation of intragastric temperature and perceived thermal stress were likely contributors to the self-selection of a higher running intensity and improved performance time.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Body Temperature Regulation , Cold Temperature , Hot Temperature , Ice , Running/physiology , Adult , Body Temperature/physiology , Humans , Male , Oxygen Consumption , Perception , Physical Endurance/physiology , Physical Exertion , Stomach/physiology , Stress, Physiological , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...