Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 8(72): 41445-41453, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-35559291

ABSTRACT

The design and synthesis of low molecular weight additives based on self-assembling nitroarylurea units, and their compatibility with poly(ethylene-co-acrylic acid) copolymers are reported. The self-assembly properties of the low molecular weight additives have been demonstrated in a series of gelation studies. Upon blending at low percentage weights (≤5%) with poly(ethylene-co-acrylic acid) the additives were capable of increasing the stress and strain to failure when compared to the parent copolymer. By varying the percentage weight of the additive as well as the type of additive the mechanical properties of poly(ethylene-co-acrylic acid) could be tailored. Finally, the healability characteristics of the blends were improved when compared to the original polymer via the introduction of a supramolecular 'network within a network'.

2.
J Phys Chem B ; 109(47): 22085-8, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16853872

ABSTRACT

Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.


Subject(s)
Argon , Heavy Ions , Oxygen , Polyethylene/chemistry , Polyethylene/radiation effects , Sensitivity and Specificity , Spectrophotometry , Surface Properties , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...