Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 29(47): 6280-93, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20802516

ABSTRACT

New anti-telomere strategies represent important goals for the development of selective cancer therapies. In this study, we reported that uncapped telomeres, resulting from pharmacological stabilization of quadruplex DNA by RHPS4 (3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium methosulfate), trigger specific recruitment and activation of poly-adenosine diphosphate (ADP) ribose polymerase I (PARP1) at the telomeres, forming several ADP-ribose polymers that co-localize with the telomeric repeat binding factor 1 protein and are inhibited by selective PARP(s) inhibitors or PARP1-specific small interfering RNAs. The knockdown of PARP1 prevents repairing of RHPS4-induced telomere DNA breaks, leading to increases in chromosome abnormalities and eventually to the inhibition of tumor cell growth both in vitro and in xenografts. More interestingly, the integration of a TOPO1 inhibitor on the combination treatment proved to have a high therapeutic efficacy ensuing a complete regression of the tumor as well as a significant increase in overall survival and cure of mice even when treatments started at a very late stage of tumor growth. Overall, this work reveals the unexplored link between the PARP1 and G-quadruplex ligands and demonstrates the excellent efficacy of a multi-component strategy based on the use of PARP inhibitors in telomere-based therapy.


Subject(s)
Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , G-Quadruplexes/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Telomere/drug effects , Telomere/genetics , Acridines/metabolism , Acridines/pharmacology , Acridines/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , DNA Damage , DNA Repair/drug effects , Drug Synergism , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Protein Transport/drug effects , Telomere/enzymology , Xenograft Model Antitumor Assays
2.
Pharmacology ; 83(2): 99-109, 2009.
Article in English | MEDLINE | ID: mdl-19088497

ABSTRACT

BACKGROUND AND AIMS: The 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole prodrug Phortress exerts potent and selective antitumour activity in vitro and in vivo. Preclinical toxicokinetic studies in 2 rodent species were undertaken to determine Phortress' maximum tolerated dose and advise a safe starting dose for clinical evaluation. METHODS: Plasma pharmacokinetic parameters were determined by high-performance liquid chromatography and fluorescence detection following Phortress administration to mice (10 mg/kg, intravenously on days 1 and 8). Phortress (20 mg/kg, on days 1 and 8) was administered to CYP1A1/betaGAL reporter mice; tissues were examined macro- and microscopically. Toxicological and pharmacodynamic endpoints were examined in organs of rodents receiving Phortress (10 mg/kg or 20 mg/kg, on days 1 and 8). CYP1A1 expression and Phortress-derived DNA adducts were determined in lungs and livers (on days 11 and 36). RESULTS: No accumulation of Phortress was detected in murine plasma. beta-Galactosidase activity inferred Phortress-derived induction of cyp1a1 transcription in the livers of transgenic mice; no total body weight loss was encountered in these animals. However, a fall in lung:body weight and kidney:body weight ratios, raised serum alkaline phosphatase levels and hepatic histopathological disturbances in animals receiving 20 mg/kg Phortress indicate organ sites of potential toxicity. CYP1A1 protein was induced transiently in the lungs of both species and in the livers of rats. Elimination of hepatic DNA adducts and rat pulmonary adducts was evident; however, murine pulmonary adducts persisted. CONCLUSION: Rodent preclinical toxicology established that mice represent the more sensitive rodent species, resolving a maximum tolerated dose of 10 mg/kg Phortress.


Subject(s)
Prodrugs/pharmacokinetics , Prodrugs/toxicity , Thiazoles/pharmacokinetics , Thiazoles/toxicity , Alkaline Phosphatase/blood , Animals , Body Weight , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts/drug effects , DNA Adducts/pharmacokinetics , Drug Evaluation, Preclinical , Female , Genes, Reporter/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/pathology , Male , Maximum Tolerated Dose , Mice , Mice, Inbred ICR , Organ Size , Rats , Rats, Sprague-Dawley , Thiazoles/blood , beta-Galactosidase/metabolism
3.
Br J Pharmacol ; 155(5): 641-54, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18806812

ABSTRACT

BACKGROUND AND PURPOSE: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death. EXPERIMENTAL APPROACH: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry. KEY RESULTS: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G(1) arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis. CONCLUSION AND IMPLICATIONS: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G(1) phase cell cycle arrest, coupled with induction of apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzylidene Compounds/pharmacology , Diterpenes/pharmacokinetics , G1 Phase/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzylidene Compounds/chemical synthesis , Benzylidene Compounds/chemistry , Blotting, Western , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , CDC2 Protein Kinase/biosynthesis , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Cyclin-Dependent Kinase 4/biosynthesis , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Molecular Structure
4.
Br J Cancer ; 96(8): 1223-33, 2007 Apr 23.
Article in English | MEDLINE | ID: mdl-17406367

ABSTRACT

The pentacyclic acridinium methosulfate salt RHPS4 induces the 3'single-stranded guanine-rich telomeric overhang to fold into a G-quadruplex structure. Stabilisation of the latter is incompatible with an attachment of telomerase to the telomere and thus G-quadruplex ligands can effectively inhibit both the catalytic and capping functions of telomerase. In this study, we examined mechanisms underlying telomere uncapping by RHPS4 in uterus carcinoma cells (UXF1138L) with short telomeres and compared the susceptibility of bulk and clonogenic cancer cells to the G-quadruplex ligand. We show that treatment of UXF1138L cells with RHPS4 leads to the displacement of the telomerase catalytic subunit (hTERT) from the nucleus, induction of telomere-initiated DNA-damage signalling and chromosome fusions. We further report that RHPS4 is more potent against cancer cells that grow as colonies in soft agar than cells growing as monolayers. Human cord blood and HEK293T embryonic kidney cell colony forming units, however, were more resistant to RHPS4. RHPS4-treated UXF1138L xenografts had a decreased clonogenicity, showed loss of nuclear hTERT expression and an induction of mitotic abnormalities compared with controls. Although single-agent RHPS4 had limited in vivo efficacy, a combination of RHPS4 with the mitotic spindle poison Taxol caused tumour remissions and further enhancement of telomere dysfunction.


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Neoplastic Stem Cells/drug effects , Telomerase/antagonists & inhibitors , Telomere/drug effects , Animals , Cell Proliferation/drug effects , Drug Synergism , Female , Humans , Mice , Paclitaxel/pharmacology
5.
Br J Cancer ; 92(2): 350-8, 2005 Jan 31.
Article in English | MEDLINE | ID: mdl-15655539

ABSTRACT

AW464 (NSC 706704) is a novel benzothiazole substituted quinol compound active against colon, renal and certain breast cancer cell lines. NCI COMPARE analysis indicates possible interaction with thioredoxin/thioredoxin reductase, which is upregulated under hypoxia. Through activity on HIF1alpha, VEGF levels are regulated and angiogenesis controlled. A thioredoxin inhibitor could therefore exhibit enhanced hypoxic toxicity and indirect antiangiogenic effects. In vitro experiments were performed on colorectal and breast cancer cell lines under both normoxic and hypoxic conditions and results compared against those obtained with normal cell lines, fibroblasts and keratinocytes. Antiangiogenic effects were studied using both large and microvessel cells. Indirect antiangiogenic effects (production of angiogenic growth factors) were studied via ELISA. We show that AW464 exerts antiproliferative effects on tumour cell lines as well as endothelial cells with an IC(50) of approximately 0.5 microM. Fibroblasts are however resistant. Proliferating, rather than quiescent, endothelial cells are sensitive to the drug indicating potential antiangiogenic rather than antivascular action. Endothelial differentiation is also inhibited in vitro. Hypoxia (1% O(2) for 48 h) sensitises colorectal cells to lower drug concentrations, and in HT29s greater inhibition of VEGF is observed under such conditions. In contrast, bFGF levels are unaffected, suggesting possible involvement of HIF1alpha. Thus, AW464 is a promising chemotherapeutic drug that may have enhanced potency under hypoxic conditions and also additional antiangiogenic activity.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Cyclohexanones/pharmacology , Neovascularization, Pathologic/drug therapy , Thiazoles/pharmacology , Benzothiazoles , Cell Line, Tumor , Endothelial Cells/cytology , Endothelial Cells/drug effects , Enzyme-Linked Immunosorbent Assay , Fibroblast Growth Factor 2/drug effects , Fibroblast Growth Factor 2/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Hypoxia , In Vitro Techniques
6.
Br J Cancer ; 88(4): 599-605, 2003 Feb 24.
Article in English | MEDLINE | ID: mdl-12592376

ABSTRACT

The fluorinated benzothiazole analogue 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203, NSC 703786) is a novel agent with potent and selective antitumour properties and, in the form of its L-lysylamide prodrug Phortress (NSC 710305), is a current candidate for early phase clinical studies. Previous findings have indicated that cytochrome P450 1A1 (CYP1A1) may play a role in the antitumour activity of molecules in the benzothiazole series including the nonfluorinated parent compound 2-(4-amino-3-methylphenyl)benzothiazole (DF 203, NSC 674495) (Kashiyama et al, 1999; Chua et al, 2000; Loaiza-Pérez et al, 2002). In this study, we assessed and verified that a fully functional aryl hydrocarbon receptor (AhR) signalling pathway is a necessary requisite for the induction of efficient cytotoxicity by 5F 203 in MCF-7 wild-type sensitive cells. Drug exposure caused MCF-7 sensitive cells to arrest in G(1) and S phase, and induced DNA adduct formation, in contrast to AhR-deficient AH(R100) variant MCF-7 cells. In sensitive MCF-7 cells, induction of CYP1A1 and CYP1B1 transcription (measured by luciferase reporter assay and real-time reverse transcriptase-polymerase chain reaction (RT-PCR)), and 7-ethoxyresorufin-O-deethylase (EROD) activity was demonstrated, following treatment with 5F 203. In contrast, in resistant AH(R100) cells, drug treatment did not affect CYP1A1 and CYP1B1 transcription and EROD activity. Furthermore, AH(R100) cells failed to produce either protein/DNA complexes on the xenobiotic responsive element (XRE) sequence of CYP1A1 promoter (measured by electrophoretic mobility shift assay) or DNA adducts. The data confirm that activation of the AhR signalling pathway is an important feature of the antitumour activity of 5F 203.


Subject(s)
Cell Cycle/drug effects , DNA Damage/drug effects , Receptors, Aryl Hydrocarbon/deficiency , Thiazoles/pharmacology , Aryl Hydrocarbon Hydroxylases/genetics , Aryl Hydrocarbon Hydroxylases/metabolism , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1B1 , DNA Adducts/analysis , DNA Adducts/metabolism , Enzyme Induction/drug effects , Humans , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects , Tumor Cells, Cultured
7.
Br J Cancer ; 88(3): 470-7, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12569393

ABSTRACT

2-(4-Aminophenyl)benzothiazoles represent a potent and highly selective class of antitumour agent. In vitro, sensitive carcinoma cells deplete 2-(4-aminophenyl)benzothiazoles from nutrient media; cytochrome P450 1A1 activity, critical for execution of antitumour activity, and protein expression are powerfully induced. 2-(4-Amino-3-methylphenyl)benzothiazole-derived covalent binding to cytochrome P450 1A1 is reduced by glutathione, suggesting 1A1-dependent production of a reactive electrophilic species. In vitro, 2-(4-aminophenyl)benzothiazole-generated DNA adducts form in sensitive tumour cells only. At concentrations >100 nM, adducts were detected in DNA of MCF-7 cells treated with 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203). 5F 203 (1 microM) led to the formation of one major and a number of minor adducts. However, treatment of cells with 10 microM 5F 203 resulted in the emergence of a new dominant adduct. Adducts accumulated steadily within DNA of MCF-7 cells exposed to 1 microM 5F 203 between 2 and 24 h. Concentrations of the lysylamide prodrug of 5F 203 (Phortress) > or = 100 nM generated adducts in the DNA of sensitive MCF-7 and IGROV-1 ovarian cells. At 1 microM, one major Phortress-derived DNA adduct was detected in these two sensitive phenotypes; 10 microM Phortress led to the emergence of an additional major adduct detected in the DNA of MCF-7 cells. Inherently resistant MDA-MB-435 breast carcinoma cells incurred no DNA damage upon exposure to Phortress (< or = 10 microM, 24 h). In vivo, DNA adducts accumulated within sensitive ovarian IGROV-1 and breast MCF-7 xenografts 24 h after treatment of mice with Phortress (20 mg kg(-1)). Moreover, Phortress-derived DNA adduct generation distinguished sensitive MCF-7 tumours from inherently resistant MDA-MB-435 xenografts implanted in opposite flanks of the same mouse.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Adducts/drug effects , Thiazoles/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Benzothiazoles , Disease Models, Animal , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms, Experimental/drug therapy , Thiazoles/therapeutic use , Time Factors , Tumor Cells, Cultured
8.
Br J Cancer ; 86(8): 1348-54, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-11953897

ABSTRACT

Novel 2-(4-aminophenyl)benzothiazoles possess highly selective, potent antitumour properties in vitro and in vivo. They induce and are biotransformed by cytochrome P450 (CYP) 1A1 to putative active as well as inactive metabolites. Metabolic inactivation of the molecule has been thwarted by isosteric replacement of hydrogen with fluorine atoms at positions around the benzothiazole nucleus. The lipophilicity of these compounds presents limitations for drug formulation and bioavailability. To overcome this problem, water soluble prodrugs have been synthesised by conjugation of alanyl- and lysyl-amide hydrochloride salts to the exocyclic primary amine function of 2-(4-aminophenyl)benzothiazoles. The prodrugs retain selectivity with significant in vitro growth inhibitory potency against the same sensitive cell lines as their parent amine, but are inactive against cell lines inherently resistant to 2-(4-aminophenyl)benzothiazoles. Alanyl and lysyl prodrugs rapidly and quantitatively revert to their parent amine in sensitive and insensitive cell lines in vitro. Liberated parent compounds are sequestered and metabolised by sensitive cells only; similarly, CYP1A1 activity and protein expression are selectively induced in sensitive carcinoma cells. Amino acid prodrugs meet the criteria of aqueous solubility, chemical stability and quantitative reversion to parent molecule, and thus are suitable for in vivo preclinical evaluation.


Subject(s)
Amino Acids/pharmacology , Aniline Compounds/pharmacology , Prodrugs/pharmacology , Thiazoles/pharmacology , Amines/metabolism , Amino Acids/metabolism , Benzothiazoles , Blotting, Western , Cell Division/drug effects , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Prodrugs/metabolism , Time Factors , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...