Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 47(11): 5455-5466, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32996591

ABSTRACT

PURPOSE: MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC. METHODS: The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V12Gy ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol. RESULTS: For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V12Gy  ≤ 10.0 cm3 planning goal for targets with diameter ≤2.25 cm. The mean V12Gy was 3.1 cm3 for TB2 vs 5.5 cm3 , 5.0 cm3 and 4.3 cm3 , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V12Gy planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V12Gy was ≤6.0 cm3 for all clinical targets (maximum target volume = 3.51 cm3 ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%. CONCLUSIONS: The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.


Subject(s)
Brain Neoplasms , Radiosurgery , Brain/diagnostic imaging , Brain/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/surgery , Feasibility Studies , Humans , Magnetic Resonance Imaging , Particle Accelerators , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
2.
Cureus ; 11(12): e6364, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31938646

ABSTRACT

INTRODUCTION: Spine stereotactic body radiation therapy (SBRT) achieves favorable outcomes compared to conventional radiotherapy doses/fractionation. The spinal cord is the principal dose-limiting organ-at-risk (OAR), and safe treatment requires precise immobilization/localization. Therefore, image guidance is paramount to successful spine SBRT. Conventional X-ray imaging and alignment to surrogate bony anatomy may be inadequate, whereas magnetic resonance imaging (MRI) directly visualizes the dose-limiting cord. This work assessed the dosimetric capability of the ViewRay (ViewRay Inc. Oakwood Village, OH) magnetic resonance (MR) guided linac (MR-Linac) for spine SBRT. METHODS: Eight spine SBRT patients without orthopedic hardware who were previously treated on a TrueBeam using volumetric modulated arc therapy (VMAT) were re-planned using MR-Linac fixed-field intensity-modulated radiation therapy (IMRT). Phantom measurements using film, ionization chamber, and a commercial diode-array assessed feasibility. Plans included a variety of prescriptions (30-50 Gy in 3-10 fractions). RESULTS: MR-Linac plans satisfied all clinical goals. Compared to VMAT plans, both entrance dose and heterogeneity increased (Dmax: 134±3% vs. 120±2%, p=0.0270), while conformality decreased (conformity index: 1.28±0.06 vs. 1.06±0.06, p=0.0005), and heterogeneity increased. However, while not statistically significant, MR-linac cord sparing improved (cord Dmax: 16.1±2.7Gy vs. 19.5±1.6Gy, p=0.2066; cord planning organ at risk volume (cord PRV) Dmax: 20.0±2.6Gy vs. 24.5±2.0Gy, p=0.0996). Delivery time increased but was acceptable (14.39±1.26min vs. 9.57±1.19min). Ionization chamber measurements agreed with planned dose to within 2.5%. Film and diode measurements demonstrated accurate/precise delivery of dose gradients between the target and the cord. CONCLUSION: Spine SBRT with the MR-Linac is feasible as verified via re-planning eight clinical cases followed by delivery verification in phantoms using film, diodes, and an ionization chamber. Real-time visualization of the dose-limiting cord during spine SBRT may enable cord-based gating, reduced margins, alternate dose schemas, and/or adaptive therapy.

3.
J Neurosci Methods ; 266: 21-31, 2016 06 15.
Article in English | MEDLINE | ID: mdl-26993819

ABSTRACT

BACKGROUND: Robust and reproducible source mapping with magnetoencephalography is particularly challenging at the individual level. We evaluated a receiver-operating characteristic reliability (ROC-r) method for automated production of volumetric MEG maps in single-subjects. ROC-r provides quality assurance comparable to that offered by goodness-of-fit (GoF) and confidence volume (CV) for equivalent current dipole (ECD) modeling. NEW METHOD: ROC-r utilizes within-session reproducibility for quality assurance, latency identification, and thresholding of volumetric source maps. We tested ROC-r on simulated and real MEG with a strongly focal source, using somatosensory evoked fields (SEFs) elicited by bilateral median nerve stimulation (MNS). For quality assurance, the ROC-r reliable fraction (FR) was compared to the ECD GoF and CV. Peak beamformer locations and latencies identified by ROC-r were compared to the ECD for co-localization accuracy. RESULTS: The predominant component of the SEF response occurred around 35ms, contralateral to the MNS. COMPARISON WITH EXISTING METHODS: FR and 1/CV were more strongly correlated (mean Pearson's correlation: 0.76; 95% CI 0.60-0.87) than FR and GoF (0.65; 95% CI 0.32-0.85). There was no difference in the latency of the peak GoF (35.0+/-0.6ms), CV (34.8+/-0.7ms) and FR (35.5+/-0.8ms). The ECD fits and ROC-r peaks co-localized to within a mean (median) distance of 8.3+/-5.9mm (6.2mm). CONCLUSION: ROC-r volumetric mapping co-localized closely with the standard ECD approach. This analysis can be added to any whole-brain MEG source imaging protocol, and is especially useful for single-subject mapping. Additionally, the development of FR as an analogue to GoF or CV for volumetric mapping is a critical improvement for clinical applications.


Subject(s)
Brain Mapping/methods , Magnetoencephalography/methods , Pattern Recognition, Automated/methods , Quality Assurance, Health Care/methods , Adult , Area Under Curve , Brain/physiology , Computer Simulation , Electric Stimulation , Evoked Potentials, Somatosensory , Female , Functional Laterality , Humans , Male , Median Nerve/physiology , ROC Curve , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...