Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 57(2): 160-173, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33237403

ABSTRACT

The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space. Often, animals fail to recapitulate human physiology and do not predict human outcomes. Also, certain human pathogens are species specific and do not infect other hosts. Concerns such as variability of results, a low throughput format, and ethical considerations further complicate the use of animals for predicting the safety and efficacy xenobiotics in humans. These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo-like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek's intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.


Subject(s)
Cell Culture Techniques , Inflammation/pathology , Intestine, Small/pathology , Models, Biological , Pharmaceutical Preparations/metabolism , Toxicity Tests , Animals , Humans , Intestine, Small/ultrastructure , Permeability
2.
Toxicol Sci ; 168(1): 3-17, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30364994

ABSTRACT

Drug-induced gastrointestinal toxicities (GITs) rank among the most common clinical side effects. Preclinical efforts to reduce incidence are limited by inadequate predictivity of in vitro assays. Recent breakthroughs in in vitro culture methods support intestinal stem cell maintenance and continual differentiation into the epithelial cell types resident in the intestine. These diverse cells self-assemble into microtissues with in vivo-like architecture. Here, we evaluate human GI microtissues grown in transwell plates that allow apical and/or basolateral drug treatment and 96-well throughput. Evaluation of assay utility focused on predictivity for diarrhea because this adverse effect correlates with intestinal barrier dysfunction which can be measured in GI microtissues using transepithelial electrical resistance (TEER). A validation set of widely prescribed drugs was assembled and tested for effects on TEER. When the resulting TEER inhibition potencies were adjusted for clinical exposure, a threshold was identified that distinguished drugs that induced clinical diarrhea from those that lack this liability. Microtissue TEER assay predictivity was further challenged with a smaller set of drugs whose clinical development was limited by diarrhea that was unexpected based on 1-month animal studies. Microtissue TEER accurately predicted diarrhea for each of these drugs. The label-free nature of TEER enabled repeated quantitation with sufficient precision to develop a mathematical model describing the temporal dynamics of barrier damage and recovery. This human 3D GI microtissue is the first in vitro assay with validated predictivity for diarrhea-inducing drugs. It should provide a platform for lead optimization and offers potential for dose schedule exploration.


Subject(s)
Diarrhea/chemically induced , Drug Evaluation/methods , Drug-Related Side Effects and Adverse Reactions , Epithelial Cells/physiology , Epithelial Cells/ultrastructure , Caco-2 Cells , Cell Differentiation , Electric Impedance , Humans , Pharmaceutical Preparations , Primary Cell Culture
3.
Pharm Res ; 35(4): 72, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29476278

ABSTRACT

PURPOSE: The study evaluates the use of new in vitro primary human cell-based organotypic small intestinal (SMI) microtissues for predicting intestinal drug absorption and drug-drug interaction. METHODS: The SMI microtissues were reconstructed using human intestinal fibroblasts and enterocytes cultured on a permeable support. To evaluate the suitability of the intestinal microtissues to model drug absorption, the permeability coefficients across the microtissues were determined for a panel of 11 benchmark drugs with known human absorption and Caco-2 permeability data. Drug-drug interactions were examined using efflux transporter substrates and inhibitors. RESULTS: The 3D-intestinal microtissues recapitulate the structural features and physiological barrier properties of the human small intestine. The microtissues also expressed drug transporters and metabolizing enzymes found on the intestinal wall. Functionally, the SMI microtissues were able to discriminate between low and high permeability drugs and correlated better with human absorption data (r2 = 0.91) compared to Caco-2 cells (r2 = 0.71). Finally, the functionality of efflux transporters was confirmed using efflux substrates and inhibitors which resulted in efflux ratios of >2.0 fold and by a decrease in efflux ratios following the addition of inhibitors. CONCLUSION: The SMI microtissues appear to be a useful pre-clinical tool for predicting drug bioavailability of orally administered drugs.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Interactions , Intestinal Absorption , Intestine, Small/cytology , Tissue Culture Techniques/methods , Administration, Oral , Adult , Biological Availability , Caco-2 Cells , Epithelial Cells , Female , Fibroblasts , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Primary Cell Culture , Young Adult
4.
J Neurosci ; 31(39): 13758-70, 2011 Sep 28.
Article in English | MEDLINE | ID: mdl-21957239

ABSTRACT

Dopaminergic signaling and plasticity are essential to numerous CNS functions and pathologies, including movement, cognition, and addiction. The amphetamine- and cocaine-sensitive dopamine (DA) transporter (DAT) tightly controls extracellular DA concentrations and half-life. DAT function and surface expression are not static but are dynamically modulated by membrane trafficking. We recently demonstrated that the DAT C terminus encodes a PKC-sensitive internalization signal that also suppresses basal DAT endocytosis. However, the cellular machinery governing regulated DAT trafficking is not well defined. In work presented here, we identified the Ras-like GTPase, Rin (for Ras-like in neurons) (Rit2), as a protein that interacts with the DAT C-terminal endocytic signal. Yeast two-hybrid, GST pull down and FRET studies establish that DAT and Rin directly interact, and colocalization studies reveal that DAT/Rin associations occur primarily in lipid raft microdomains. Coimmunoprecipitations demonstrate that PKC activation regulates Rin association with DAT. Perturbation of Rin function with GTPase mutants and shRNA-mediated Rin knockdown reveals that Rin is critical for PKC-mediated DAT internalization and functional downregulation. These results establish that Rin is a DAT-interacting protein that is required for PKC-regulated DAT trafficking. Moreover, this work suggests that Rin participates in regulated endocytosis.


Subject(s)
Cell Membrane/enzymology , Dopamine Plasma Membrane Transport Proteins/metabolism , Glycoproteins/metabolism , Membrane Microdomains/enzymology , Nerve Tissue Proteins/metabolism , Protein Kinase C/physiology , Animals , Cell Membrane/metabolism , HEK293 Cells , Humans , Membrane Microdomains/metabolism , Mitochondrial Proteins/metabolism , Monomeric GTP-Binding Proteins/metabolism , PC12 Cells , Protein Binding/physiology , Protein Transport/physiology , Rats , ras Proteins/metabolism
5.
J Vis Exp ; (34)2009 Dec 23.
Article in English | MEDLINE | ID: mdl-20032927

ABSTRACT

Plasma membrane proteins are a large, diverse group of proteins comprised of receptors, ion channels, transporters and pumps. Activity of these proteins is responsible for a variety of key cellular events, including nutrient delivery, cellular excitability, and chemical signaling. Many plasma membrane proteins are dynamically regulated by endocytic trafficking, which modulates protein function by altering protein surface expression. The mechanisms that facilitate protein endocytosis are complex and are not fully understood for many membrane proteins. In order to fully understand the mechanisms that control the endocytic trafficking of a given protein, it is critical that the protein s endocytic rate be precisely measured. For many receptors, direct endocytic rate measurements are frequently achieved utilizing labeled receptor ligands. However, for many classes of membrane proteins, such as transporters, pumps and ion channels, there is no convenient ligand that can be used to measure the endocytic rate. In the present report, we describe a reversible biotinylation method that we employ to measure the dopamine transporter (DAT) endocytic rate. This method provides a straightforward approach to measuring internalization rates, and can be easily employed for trafficking studies of most membrane proteins.


Subject(s)
Biotinylation/methods , Cell Membrane/metabolism , Endocytosis/physiology , Membrane Proteins/metabolism
6.
Mol Cell Neurosci ; 39(2): 211-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18638559

ABSTRACT

Dopamine (DA) reuptake terminates dopaminergic neurotransmission and is mediated by DA transporters (DATs). Acute protein kinase C (PKC) activation accelerates DAT internalization rates, thereby reducing DAT surface expression. Basal DAT endocytosis and PKC-stimulated DAT functional downregulation rely on residues within the 587-596 region, although whether PKC-induced DAT downregulation reflects transporter endocytosis mechanisms linked to those controlling basal endocytosis rates is unknown. Here, we define residues governing basal and PKC-stimulated DAT endocytosis. Alanine substituting DAT residues 587-590 1) abolished PKC stimulation of DAT endocytosis, and 2) markedly accelerated basal DAT internalization, comparable to that of wildtype DAT during PKC activation. Accelerated basal DAT internalization relied specifically on residues 588-590, which are highly conserved among SLC6 neurotransmitter transporters. Our results support a model whereby residues within the 587-590 stretch may serve as a locus for a PKC-sensitive braking mechanism that tempers basal DAT internalization rates.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/chemistry , Dopamine Plasma Membrane Transport Proteins/metabolism , Endocytosis/drug effects , Protein Kinase C/pharmacology , Alanine/genetics , Animals , Biotinylation/methods , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Endocytosis/physiology , PC12 Cells , Protein Structure, Tertiary/physiology , Rats , Transfection/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...