Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38637152

ABSTRACT

Canonically, action potentials of most mammalian neurons initiate at the axon initial segment (AIS) and propagate bidirectionally: orthodromically along the distal axon and retrogradely into the soma and dendrites. Under some circumstances, action potentials may initiate ectopically, at sites distal to the AIS, and propagate antidromically along the axon. These "ectopic action potentials" (EAPs) have been observed in experimental models of seizures and chronic pain, and more rarely in nonpathological forebrain neurons. Here we report that a large majority of parvalbumin-expressing (PV+) interneurons in the upper layers of mouse neocortex, from both orbitofrontal and primary somatosensory areas, fire EAPs after sufficient activation of their somata. Somatostatin-expressing interneurons also fire EAPs, though less robustly. Ectopic firing in PV+ cells occurs in varying temporal patterns and can persist for several seconds. PV+ cells evoke strong synaptic inhibition in pyramidal neurons and interneurons and play critical roles in cortical function. Our results suggest that ectopic spiking of PV+ interneurons is common and may contribute to both normal and pathological network functions of the neocortex.


Subject(s)
Action Potentials , Interneurons , Mice, Transgenic , Neocortex , Parvalbumins , Animals , Parvalbumins/metabolism , Interneurons/physiology , Interneurons/metabolism , Neocortex/physiology , Action Potentials/physiology , Male , Mice , Female , Mice, Inbred C57BL , Pyramidal Cells/physiology , Somatostatin/metabolism
2.
Cell Rep ; 25(9): 2299-2307.e4, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30485800

ABSTRACT

Poverty, displacement, and parental stress represent potent sources of early life stress (ELS). Stress disproportionately affects females, who are at increased risk for stress-related pathologies associated with cognitive impairment. Mechanisms underlying stress-associated cognitive impairment and enhanced risk of females remain unknown. Here, ELS is associated with impaired rule-reversal (RR) learning in females, but not males. Impaired performance was associated with decreased expression and density of interneurons expressing parvalbumin (PV+) in orbitofrontal cortex (OFC), but not other interneuron subtypes. Optogenetic silencing of PV+ interneuron activity in OFC of control mice phenocopied RR learning deficits observed in ELS females. Localization of reversal learning deficits to PV+ interneurons in OFC was confirmed by optogenetic studies in which neurons in medial prefrontal cortex (mPFC) were silenced and associated with select deficits in rule-shift learning. Sex-, cell-, and region-specific effects show altered PV+ interneuron development can be a driver of sex differences in cognitive dysfunction.


Subject(s)
Interneurons/physiology , Parvalbumins/metabolism , Prefrontal Cortex/physiopathology , Reversal Learning/physiology , Sex Characteristics , Stress, Psychological/physiopathology , Animals , Cell Count , Female , Male , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
PLoS One ; 9(5): e97761, 2014.
Article in English | MEDLINE | ID: mdl-24849114

ABSTRACT

Male Xenopus laevis frogs have been observed to clasp other males in a sustained, amplectant position, the purpose of which is unknown. We examined three possible hypotheses for this counter-intuitive behavior: 1) clasping males fail to discriminate the sex of the frogs they clasp; 2) male-male clasping is an aggressive or dominant behavior; or 3) that males clasp other males to gain proximity to breeding events and possibly engage in sperm competition. Our data, gathered through a series of behavioral experiments in the laboratory, refute the first two hypotheses. We found that males did not clasp indiscriminately, but showed a sex preference, with most males preferentially clasping a female, but a proportion preferentially clasping another male. Males that clasped another male when there was no female present were less likely to "win" reproductive access in a male-male-female triad, indicating that they did not establish dominance through clasping. However, those males did gain proximity to oviposition by continued male-male clasping in the presence of the female. Thus, our findings are consistent with, but cannot confirm, the third hypothesis of male-male clasping as an alternative reproductive tactic.


Subject(s)
Behavior, Animal , Xenopus laevis/physiology , Aggression , Animals , Breeding , Female , Male , Mating Preference, Animal , Reproduction , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...