Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 38(39): 11845-11859, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36121768

ABSTRACT

We report the synthesis of a new conjugated polymer bearing crown ether moieties, poly[(N(1-aza-[18]crown-6)carbamido)thiophene-2,5-diyl-alt-1,4-phenylene] (BG2). In water, BG2 forms a dispersion with a slightly cloudy appearance. We have studied the effect of adding surfactants, with different polar head groups, on these polymer-polymer aggregates. Special attention is given to the system with the anionic surfactant, sodium dodecyl sulfate (SDS). The combination of photophysical techniques with electrical conductivity, NMR (1H, 13C, and 27Na), DFT calculations, molecular dynamics simulations, and small-angle neutron scattering (SANS) provides a detailed picture on the behavior of the SDS/BG2 system in aqueous solution and in thin films. NMR, electric conductivity, and DFT results suggest that hydrophilic interactions occur between the polar headgroup of the surfactant (OSO3- Na+) and the aza-[18]-crown-6 moiety. DFT calculations confirmed the capability of BG2 to form stable complexes with the Na+ cations, where the cation can be either inside the azacrown cavity or sandwiched between the cavity and the polymer chain, which seem to determine the position of the surfactant hydrocarbon chain and, therefore, be responsible for the disruption of the BG2 aggregates and subsequent increase in the photoluminescence quantum yields. SANS measurements, made with hydrogenated and deuterated SDS in D2O, clearly show how micron-sized aggregates of BG2 are broken down by SDS and then how BG2 becomes preferentially incorporated within joint colloidal particles of BG2 and SDS with increasing [SDS]/[BG2] molar ratio.

2.
J Appl Crystallogr ; 53(Pt 5): 1181-1194, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33117107

ABSTRACT

This paper describes in detail two neutron diffraction residual stress measurements, performed on the ENGIN-X neutron scattering instrument at the ISIS facility in the UK and on the SALSA instrument at the Institut Laue-Langevin in Grenoble, France. The measurements were conducted as part of the NeT Task Group 6 (TG6) international measurement round robin on an Alloy 600/82 multi-pass weldment - a slot in an Alloy 600 plate filled with three Alloy 82 weld beads, simulating a repair weld. This alloy/weld combination is considered challenging to measure, due to the large grain size and texture in the weld, and large gradients in the stress-free lattice parameter between the parent and weld metal. The basic principles of the neutron diffraction technique are introduced and issues affecting the reliability of residual stress characterization are highlighted. Two different analysis strategies are used for estimation of residual stresses from the raw data. Chemical composition studies are used to measure the mixing of parent and weld metal and highlight the steep lattice parameter gradients that arise as a consequence. The inferred residual stresses are then compared with three sets of measurements performed on the same plate by other NeT partners on E3 at the HZB in Berlin, STRESS-SPEC at the FRM II in Munich and KOWARI in Sydney. A robust Bayesian estimation average is calculated from the combined five-instrument data set, allowing reliable best estimates of the residual stress distribution in the vicinity of the weldment. The systematic uncertainties associated with the residual stress measurements are determined separately in the weld and parent materials, and compared with those in the NeT TG4 benchmark. This is a three-pass slot-welded plate fabricated from American Iron and Steel Institute AISI 316L(N) austenitic stainless steel, and is normally considered less challenging to measure using diffraction techniques than all nickel welds. The uncertainties in the stress measurements by neutron diffraction for these two weldments seem to be comparable.

3.
Phys Chem Chem Phys ; 18(25): 16629-40, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-26817700

ABSTRACT

We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(iii) and Zn(ii) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by DFT calculations and molecular dynamics (MD) simulations. Under appropriate conditions, complexes between 8-HQS and metal ions form rapidly, and have similar electronic, spectroscopic and photophysical properties to the corresponding metal quinolates, such as Alq3. These interact with the cationic surfactants, leading to marked increases in fluorescence intensity. However, significant differences are seen in the behavior of the two metal ions. With aluminium, a stable [Al(8-QS)3](3-) anion is formed, and interacts, predominantly through electrostatic interactions, with the surfactant, without disrupting the metal ion coordination sphere. In contrast, with Zn(ii), there is a competition between the metal ion and surfactants in the interaction with 8-HQS, although the [Zn(8-QS)2(H2O)2](2-) species is stable at appropriate pH and surfactant concentration. The studies are extended to systems with the conjugated polyelectrolyte (CPE) poly-(9,9-bis(6-N,N,N-trimethylammonium)hexyl)-fluorene-phenylene bromide (HTMA-PFP), which has a similar alkylammonium chain to the surfactants. Mixing metal salt, 8-HQS and HTMA-PFP in the presence of a nonionic surfactant leads to the formation of a metal complex/CPE supramolecular assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed.

4.
Materials (Basel) ; 9(5)2016 May 18.
Article in English | MEDLINE | ID: mdl-28773506

ABSTRACT

Results are presented using molecular dynamics (MD) of the self-assembly of the conjugated polyelectrolyte poly[9,9-bis(4-sulfonylbutoxyphenylphenyl) fluorene-2,7-diyl-2,2'-bithiophene] (PBS-PF2T) with 680 mM pentaethylene glycol monododecyl ether (C12E5) in water. Simulations are used to examine the interaction between PBS-PF2T and C12E5 and suggest a break-up of PBS-PF2T aggregates in solution. These systems are dominated by the formation of cylindrical phases at temperatures between 0 °C and 20 °C and also between 45 °C and 90 °C. More diffuse phases are seen to occur between 20 °C and 45 °C and also above 90 °C. Simulations are related to previous computational and experimental studies on PBS-PF2T aggregation in the presence of tetraethylene glycol monododecyl ether (C12E4) in bulk and thin films.

5.
Dalton Trans ; 42(4): 927-34, 2013 Jan 28.
Article in English | MEDLINE | ID: mdl-23060073

ABSTRACT

The formation of an active 16-electron ruthenium sec-alkoxide complex via loss of the CO ligand is an important step in the mechanism of the racemization of sec-alcohols by (η(5)-Ph(5)C(5))Ru(CO)(2)X ruthenium complexes with X = Cl and O(t)Bu. Here we show with accurate DFT calculations the potential energy profile of the CO dissociation pathway for a series of relevant (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes, where X = Cl, O(t)Bu, H and COO(t)Bu. We have found that the CO dissociation energy increases in the following order: O(t)Bu (lowest), Cl, COO(t)Bu and H (highest). Using the distance between ruthenium and C(CO), r = Ru-C(CO), as a constraint, and by optimizing all other degrees of freedom for a range of Ru-CO distances, we obtained relative energies, ΔE(r) and geometries of a sufficient number of transient structures with the elongated Ru-CO bond up to r = 3.4 Å. Our calculations provide a quantitative understanding of the CO ligand dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)Cl and (η(5)-Ph(5)C(5))Ru(CO)(2)(O(t)Bu) complexes, which is relevant to the mechanism of their catalytic activity in the racemization of alcohols. We recently reported that exchange of the CO ligand by isotopically labeled (13)CO in the Ru-O(t)Bu complex occurs twenty times faster than that in the Ru-Cl complex. This corresponds to a difference of 1.8 kcal mol(-1) in the CO dissociation energy (at room temperature). This is in very good agreement with the calculated difference between the two potential energy curves for Ru-O(t)Bu and Ru-Cl complexes, which is about 1.8-2 kcal mol(-1) around the corresponding transition states of the CO dissociation. The calculated difference in the total energy for CO dissociation in (η(5)-Ph(5)C(5))Ru(CO)(2)X complexes is related to the stabilization provided by the X group in the final 16-electron complexes, which are formed via product-like transition states. In addition to the calculated transition states of CO dissociation in Ru-O(t)Bu and Ru-Cl complexes, the calculated transient structures with the elongated Ru-CO bond provide insight into how the geometry of the ruthenium complex with a potent heteroatom donor group (X) gradually changes when one of the COs is dissociating.


Subject(s)
Alcohols/chemistry , Carbon Monoxide/chemistry , Coordination Complexes/chemistry , Ruthenium/chemistry , Catalysis , Models, Chemical , Molecular Conformation , Thermodynamics
6.
J Am Chem Soc ; 134(45): 18868-80, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23062211

ABSTRACT

Using the combinations of imidazole and dimethyl sulfoxide (DMSO) as axial ligands and 2,2'-bipyridine-6,6'-dicarboxylate (bda) as the equatorial ligand, we have synthesized six novel ruthenium complexes with noticeably different activity as water oxidation catalysts (WOCs). In four C(s) symmetric Ru(II)(κ(3)-bda)(DMSO)L(2) complexes L = imidazole (1), N-methylimidazole (2), 5-methylimidazole (3), and 5-bromo-N-methylimidazole (4). Additionally, in two C(2v) symmetric Ru(II)(κ(4)-bda)L(2) complexes L = 5-nitroimidazole (5) and 5-bromo-N-methylimidazole (6), that is, fully equivalent axial imidazoles. A detailed characterization of all complexes and the mechanistic investigation of the catalytic water oxidation have been carried out with a number of experimental techniques, that is, kinetics, electrochemistry and high resolution mass spectrometry (HR-MS), and density functional theory (DFT) calculations. We have observed the in situ formation of a Ru(II)-complex with the accessible seventh coordination position. The measured catalytic activities and kinetics of complex 1-6 revealed details about an important structure-activity relation: the connection between the nature of axial ligands in the combination and either the increase or decrease of the catalytic activity. In particular, an axial DMSO group substantially increases the turnover frequency of WOCs reported in the article, with the ruthenium-complex having one axial 5-bromo-N-methyl-imidazole and one axial DMSO (4), we have obtained a high initial turnover frequency of ∼180 s(-1). DFT modeling of the binuclear reaction pathway of the O-O bond formation in catalytic water oxidation further corroborated the concept of the mechanistic significance of the axial ligands and rationalized the experimentally observed difference in the activity of complexes with imidazole/DMSO and imidazole/imidazole combinations of axial ligands.


Subject(s)
Dimethyl Sulfoxide/chemistry , Imidazoles/chemistry , Organometallic Compounds/chemistry , Ruthenium/chemistry , Water/chemistry , Catalysis , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Oxidation-Reduction
7.
Nat Chem ; 4(5): 418-23, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22522263

ABSTRACT

Across chemical disciplines, an interest in developing artificial water splitting to O(2) and H(2), driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that 'two orders of magnitude' gap with a rationally designed molecular catalyst [Ru(bda)(isoq)(2)] (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s(-1). This value is, for the first time, moderately comparable with the reaction rate of 100-400 s(-1) of the oxygen-evolving complex of photosystem II in vivo.


Subject(s)
Energy-Generating Resources , Ruthenium/chemistry , Water/chemistry , Catalysis , Hydrogen/chemistry , Oxidation-Reduction , Oxygen/chemistry , Photosystem II Protein Complex/chemistry
8.
Angew Chem Int Ed Engl ; 51(20): 4921-4, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22431324

ABSTRACT

Light without fright: a synthetic route to fluorescent primary phosphanes (RPH(2)) that are resistant to air oxidation both in the solid state and in chloroform solution is described. These versatile precursors undergo hydrophosphination to give tripodal ligands and subsequently fluorescent transition-metal complexes.

9.
Chem Commun (Camb) ; 47(29): 8274-6, 2011 Aug 07.
Article in English | MEDLINE | ID: mdl-21706077

ABSTRACT

Enantiopure chiral phosphiranes possessing a binaphthyl backbone demonstrate remarkable thermal stability, are highly resistant to air-oxidation and are effective ligands in catalytic asymmetric hydrosilylations.

10.
Chemistry ; 15(6): 1359-69, 2009.
Article in English | MEDLINE | ID: mdl-19115286

ABSTRACT

This article describes the synthesis and characterization of several new difluoroboradiazaindacene (BODIPY) dyes functionalized at the central 8-position by a phenyliodo, phenylheptynoate or phenylheptynoic fragment and at the 3- or 3/5-position(s) by 4-dimethylaminophenylstyryl residue(s). Single-crystal structural determinations confirm the planarity of the dyes, while the absorption and fluorescence spectroscopic properties are highly sensitive to the state of protonation (or alkylation) of the terminal anilino donor group(s). Reversible color tuning from green to blue for absorption and from colorless (i.e., near-IR region) to red for fluorescence is obtained on successive addition of acid and base. The difunctionalized derivative is especially interesting in this respect and shows two well-resolved pK(a) values of 5.10 and 3.04 in acetonitrile. Addition of the first proton causes only small spectral changes and deactivates the molecule towards addition of the second proton. It is this latter step that accommodates the large change in absorption and emission properties, due to the reversible extinction of the intramolecular charge-transfer character inherent to this type of dye. The main focus of the work is the covalent anchoring of the dyes to inert, porous polyacrylate beads so as to form a solid-state sensor suitable for analysis of gases or flowing liquids. The final material is highly stable--its performance is undiminished after more than one year--and fully reversible over many cycles. The sensitivity is such that reactions can be followed by the naked eye and the detection limit is about 600 ppb for HCl and about 80 ppb for ammonia. Trace amounts of diphosgene can be detected, as can alkylating agents. The sensing action is indiscriminate and also operates when the beads are dispersed in aqueous media.

SELECTION OF CITATIONS
SEARCH DETAIL
...