Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 15(4): 2692-2705, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30807147

ABSTRACT

Sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a transmembrane pump that plays an important role in transporting calcium into the sarcoplasmic reticulum (SR). While calcium (Ca2+) binds SERCA with micromolar affinity, magnesium (Mg2+) and potassium (K+) also compete with Ca2+ binding. However, the molecular bases for these competing ions' influence on the SERCA function and the selectivity of the pump for Ca2+ are not well-established. We therefore used in silico methods to resolve molecular determinants of cation binding in the canonical site I and II Ca2+ binding sites via (1) triplicate molecular dynamics (MD) simulations of Mg2+, Ca2+, and K+-bound SERCA, (2) mean spherical approximation (MSA) theory to score the affinity and selectivity of cation binding to the MD-resolved structures, and (3) state models of SERCA turnover informed from MSA-derived affinity data. Our key findings are that (a) coordination at sites I and II is optimized for Ca2+ and to a lesser extent for Mg2+ and K+, as determined by MD-derived cation-amino acid oxygen and bound water configurations, (b) the impaired coordination and high desolvation cost for Mg2+ precludes favorable Mg2+ binding relative to Ca2+, while K+ has limited capacity to bind site I, and (c) Mg2+ most likely acts as inhibitor and K+ as intermediate in SERCA's reaction cycle, based on a best-fit state model of SERCA turnover. These findings provide a quantitative basis for SERCA function that leverages molecular-scale thermodynamic data and rationalizes enzyme activity across broad ranges of K+, Ca2+, and Mg2+ concentrations.


Subject(s)
Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thermodynamics , Animals , Binding Sites , Calcium/metabolism , Cations/metabolism , Magnesium/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Potassium/metabolism , Protein Binding , Rabbits , Sarcoplasmic Reticulum Calcium-Transporting ATPases/chemistry
2.
J Physiol ; 597(3): 799-818, 2019 02.
Article in English | MEDLINE | ID: mdl-30462840

ABSTRACT

KEY POINTS: A computational model of P2X channel activation in microglia was developed that includes downfield Ca2+ -dependent signalling pathways. This model provides quantitative insights into how diverse signalling pathways in microglia converge to control microglial function. ABSTRACT: Microglia function is orchestrated through highly coupled signalling pathways that depend on calcium (Ca2+ ). In response to extracellular ATP, transient increases in intracellular Ca2+ driven through the activation of purinergic receptors, P2X and P2Y, are sufficient to promote cytokine synthesis. Although the steps comprising the pathways bridging purinergic receptor activation with transcriptional responses have been probed in great detail, a quantitative model for how these steps collectively control cytokine production has not been established. Here we developed a minimal computational model that quantitatively links extracellular stimulation of two prominent ionotropic purinergic receptors, P2X4 and P2X7, with the graded production of a gene product, namely the tumour necrosis factor α (TNFα) cytokine. In addition to Ca2+ handling mechanisms common to eukaryotic cells, our model includes microglia-specific processes including ATP-dependent P2X4 and P2X7 activation, activation of nuclear factor of activated T-cells (NFAT) transcription factors, and TNFα production. Parameters for this model were optimized to reproduce published data for these processes, where available. With this model, we determined the propensity for TNFα production in microglia, subject to a wide range of ATP exposure amplitudes, frequencies and durations that the cells could encounter in vivo. Furthermore, we have investigated the extent to which modulation of the signal transduction pathways influence TNFα production. Our results suggest that pulsatile stimulation of P2X4 via micromolar ATP may be sufficient to promote TNFα production, whereas high-amplitude ATP exposure is necessary for production via P2X7. Furthermore, under conditions that increase P2X4 expression, for instance, following activation by pathogen-associated molecular factors, P2X4-associated TNFα production is greatly enhanced. Given that Ca2+ homeostasis in microglia is profoundly important to its function, this computational model provides a quantitative framework to explore hypotheses pertaining to microglial physiology.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Microglia/metabolism , Receptors, Purinergic/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/drug effects , Cell Line , Microglia/drug effects , Purinergic P2X Receptor Antagonists/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism
3.
Cell Calcium ; 71: 65-74, 2018 05.
Article in English | MEDLINE | ID: mdl-29604965

ABSTRACT

Hyperamylinemia is a condition that accompanies obesity and precedes type II diabetes, and it is characterized by above-normal blood levels of amylin, the pancreas-derived peptide. Human amylin oligomerizes easily and can deposit in the pancreas [1], brain [2], and heart [3], where they have been associated with calcium dysregulation. In the heart, accumulating evidence suggests that human amylin oligomers form moderately cation-selective [4,5] channels that embed in the cell sarcolemma (SL). The oligomers increase membrane conductance in a concentration-dependent manner [5], which is correlated with elevated cytosolic Ca2+. These findings motivate our core hypothesis that non-selective inward Ca2+ conduction afforded by human amylin oligomers increase cytosolic and sarcoplasmic reticulum (SR) Ca2+ load, which thereby magnifies intracellular Ca2+ transients. Questions remain however regarding the mechanism of amylin-induced Ca2+ dysregulation, including whether enhanced SL Ca2+ influx is sufficient to elevate cytosolic Ca2+ load [6], and if so, how might amplified Ca2+ transients perturb Ca2+-dependent cardiac pathways. To investigate these questions, we modified a computational model of cardiomyocytes Ca2+ signaling to reflect experimentally-measured changes in SL membrane permeation and decreased sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) function stemming from acute and transgenic human amylin peptide exposure. With this model, we confirmed the hypothesis that increasing SL permeation alone was sufficient to enhance Ca2+ transient amplitudes. Our model indicated that amplified cytosolic transients are driven by increased Ca2+ loading of the SR and that greater fractional release may contribute to the Ca2+-dependent activation of calmodulin, which could prime the activation of myocyte remodeling pathways. Importantly, elevated Ca2+ in the SR and dyadic space collectively drive greater fractional SR Ca2+ release for human amylin expressing rats (HIP) and acute amylin-exposed rats (+Amylin) mice, which contributes to the inotropic rise in cytosolic Ca2+ transients. These findings suggest that increased membrane permeation induced by oligomeratization of amylin peptide in cell sarcolemma contributes to Ca2+ dysregulation in pre-diabetes.


Subject(s)
Calcium/metabolism , Heart Ventricles/pathology , Islet Amyloid Polypeptide/pharmacology , Models, Biological , Myocytes, Cardiac/metabolism , Animals , Calcium Signaling/drug effects , Humans , Ions , Mice , Rats , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcolemma/drug effects , Sarcolemma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...