Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Front Immunol ; 12: 654225, 2021.
Article in English | MEDLINE | ID: mdl-34093543

ABSTRACT

Natural killer (NK) cells are the predominant innate lymphocytes that provide early defense against infections. In the inflammatory milieu, NK cells modify their metabolism to support high energy demands required for their proliferation, activation, and functional plasticity. This metabolic reprogramming is usually accompanied by the upregulation of nutrient transporter expression on the cell surface, leading to increased nutrient uptake required for intense proliferation. The interleukin-1 family members of inflammatory cytokines are critical in activating NK cells during infection; however, their underlying mechanism in NK cell metabolism is not fully elucidated. Previously, we have shown that IL-18 upregulates the expression of solute carrier transmembrane proteins and thereby induces a robust metabolic boost in NK cells. Unexpectedly, we found that IL-18 signaling is dispensable during viral infection in vivo, while the upregulation of nutrient transporters is primarily MyD88-dependent. NK cells from Myd88-/- mice displayed significantly reduced surface expression of nutrient receptors and mTOR activity during MCMV infection. We also identified that IL-33, another cytokine employing MyD88 signaling, induces the expression of nutrient transporters but requires a pre-exposure to IL-12. Moreover, signaling through the NK cell activating receptor, Ly49H, can also promote the expression of nutrient transporters. Collectively, our findings revealed multiple pathways that can induce the expression of nutrient transporters on NK cells while highlighting the imperative role of MyD88 in NK cell metabolism during infection.


Subject(s)
Herpesviridae Infections/etiology , Herpesviridae Infections/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Muromegalovirus/immunology , Myeloid Differentiation Factor 88/metabolism , Nutrients/metabolism , Animals , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Energy Metabolism , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Signal Transduction
2.
Blood ; 136(19): 2162-2174, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32589707

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes typically associated with underlying hematologic and rheumatic diseases, respectively. Familial HLH is associated with genetic cytotoxic impairment and thereby to excessive antigen presentation. Extreme elevation of serum interleukin-18 (IL-18) has been observed specifically in patients with MAS, making it a promising therapeutic target, but how IL-18 promotes hyperinflammation remains unknown. In an adjuvant-induced MAS model, excess IL-18 promoted immunopathology, whereas perforin deficiency had no effect. To determine the effects of excess IL-18 on virus-induced immunopathology, we infected Il18-transgenic (Il18tg) mice with lymphocytic choriomeningitis virus (LCMV; strain Armstrong). LCMV infection is self-limited in wild-type mice, but Prf1-/- mice develop prolonged viremia and fatal HLH. LCMV-infected Il18-transgenic (Il18tg) mice developed cachexia and hyperinflammation comparable to Prf1-/- mice, albeit with minimal mortality. Like Prf1-/- mice, immunopathology was largely rescued by CD8 depletion or interferon-γ (IFNg) blockade. Unlike Prf1-/- mice, they showed normal target cell killing and normal clearance of viral RNA and antigens. Rather than impairing cytotoxicity, excess IL-18 acted on T lymphocytes to amplify their inflammatory responses. Surprisingly, combined perforin deficiency and transgenic IL-18 production caused spontaneous hyperinflammation specifically characterized by CD8 T-cell expansion and improved by IFNg blockade. Even Il18tg;Prf1-haplosufficient mice demonstrated hyperinflammatory features. Thus, excess IL-18 promotes hyperinflammation via an autoinflammatory mechanism distinct from, and synergistic with, cytotoxic impairment. These data establish IL-18 as a potent, independent, and modifiable driver of life-threatening innate and adaptive hyperinflammation and support the rationale for an IL-18-driven subclass of hyperinflammation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Inflammation/pathology , Intercellular Signaling Peptides and Proteins/physiology , Interleukin-18/metabolism , Lymphocytic Choriomeningitis/complications , Lymphocytic choriomeningitis virus/pathogenicity , Perforin/physiology , Animals , Female , Inflammation/etiology , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-18/genetics , Lymphocyte Activation , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
3.
Mol Cancer Res ; 17(8): 1759-1773, 2019 08.
Article in English | MEDLINE | ID: mdl-31164412

ABSTRACT

Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/pathology , Interleukin-17/metabolism , Myeloid Differentiation Factor 88/physiology , Skin Neoplasms/pathology , T-Lymphocytes/metabolism , ras Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Interleukin-17/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Receptors, Interleukin-1 Type I/physiology , Signal Transduction , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , T-Lymphocytes/pathology , Tumor Microenvironment , ras Proteins/genetics
4.
Cancer Res ; 75(14): 2788-99, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25990221

ABSTRACT

Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment.


Subject(s)
Chemotaxis, Leukocyte/drug effects , Enzyme Inhibitors/pharmacology , Lymphocyte Activation/drug effects , Neoplasms/pathology , Nitric Oxide Synthase/antagonists & inhibitors , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Animals , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Enzyme Inhibitors/therapeutic use , Female , Humans , Jurkat Cells , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplasms/drug therapy , Neoplasms/radiotherapy
5.
Gastroenterology ; 146(1): 210-221.e13, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24120477

ABSTRACT

BACKGROUND & AIMS: Treatment of inflammatory bowel disease would benefit from specific targeting of therapeutics to the intestine. We developed a strategy for localized delivery of the immunosuppressive cytokine interleukin (IL)-27, which is synthesized actively in situ by the food-grade bacterium Lactococcus lactis (LL-IL-27), and tested its ability to reduce colitis in mice. METHODS: The 2 genes encoding mouse IL-27 were synthesized with optimal codon use for L lactis and joined with a linker; a signal sequence was added to allow for product secretion. The construct was introduced into L lactis. Colitis was induced via transfer of CD4(+)CD45RB(hi) T cells into Rag(-/-) mice to induce colitis; 7.5 weeks later, LL-IL-27 was administered to mice via gavage. Intestinal tissues were collected and analyzed. RESULTS: LL-IL-27 administration protected mice from T-cell transfer-induced enterocolitis and death. LL-IL-27 reduced disease activity scores, pathology features of large and small bowel, and levels of inflammatory cytokines in colonic tissue. LL-IL-27 also reduced the numbers of CD4(+) and IL-17(+) T cells in gut-associated lymphoid tissue. The effects of LL-IL-27 required production of IL-10 by the transferred T cells. LL-IL-27 was more effective than either LL-IL-10 or systemic administration of recombinant IL-27 in reducing colitis in mice. LL-IL-27 also reduced colitis in mice after administration of dextran sodium sulfate. CONCLUSIONS: LL-IL-27 reduces colitis in mice by increasing the production of IL-10. Mucosal delivery of LL-IL-27 could be a more effective and safer therapy for inflammatory bowel disease.


Subject(s)
Drug Delivery Systems/methods , Enterocolitis/immunology , Immunologic Factors/administration & dosage , Inflammatory Bowel Diseases , Interleukin-10/immunology , Interleukins/administration & dosage , Intestinal Mucosa/immunology , Lactococcus lactis , Administration, Oral , Animals , Disease Models, Animal , Immunologic Factors/pharmacology , Interleukins/immunology , Intestinal Mucosa/drug effects , Mice , T-Lymphocytes , Transformation, Bacterial
6.
J Clin Invest ; 123(11): 4859-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24216477

ABSTRACT

The capacity of IL-10 and Tregs in the inflammatory tumor microenvironment to impair anticancer Th1 immunity makes them attractive targets for cancer immunotherapy. IL-10 and Tregs also suppress Th17 activity, which is associated with poor prognosis in several cancers. However, previous studies have overlooked their potential contribution to the regulation of pathogenic cancer-associated inflammation. In this study, we investigated the origin and function of IL-10­producing cells in the tumor microenvironment using transplantable tumor models in mice. The majority of tumor-associated IL-10 was produced by an activated Treg population. IL-10 production by Tregs was required to restrain Th17-type inflammation. Accumulation of activated IL-10+ Tregs in the tumor required type I IFN signaling but not inflammatory signaling pathways that depend on TLR adapter protein MyD88 or IL-12 family cytokines. IL-10 production limited Th17 cell numbers in both spleen and tumor. However, type I IFN was required to limit Th17 cells specifically in the tumor microenvironment, reflecting selective control of tumor-associated Tregs by type I IFN. Thus, the interplay of type I IFN, Tregs, and IL-10 is required to negatively regulate Th17 inflammation in the tumor microenvironment. Therapeutic interference of this network could therefore have the undesirable consequence of promoting Th17 inflammation and cancer growth.


Subject(s)
Inflammation/immunology , Interferon Type I/metabolism , Interleukin-10/biosynthesis , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Tumor Microenvironment/immunology , Animals , Cell Line, Tumor , Humans , Immunotherapy/adverse effects , Inflammation/etiology , Inflammation/prevention & control , Interleukin-10/deficiency , Interleukin-10/genetics , Interleukin-17/biosynthesis , Interleukin-17/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Signal Transduction/immunology , Tumor Microenvironment/genetics
7.
Science ; 342(6161): 967-70, 2013 Nov 22.
Article in English | MEDLINE | ID: mdl-24264989

ABSTRACT

The gut microbiota influences both local and systemic inflammation. Inflammation contributes to development, progression, and treatment of cancer, but it remains unclear whether commensal bacteria affect inflammation in the sterile tumor microenvironment. Here, we show that disruption of the microbiota impairs the response of subcutaneous tumors to CpG-oligonucleotide immunotherapy and platinum chemotherapy. In antibiotics-treated or germ-free mice, tumor-infiltrating myeloid-derived cells responded poorly to therapy, resulting in lower cytokine production and tumor necrosis after CpG-oligonucleotide treatment and deficient production of reactive oxygen species and cytotoxicity after chemotherapy. Thus, optimal responses to cancer therapy require an intact commensal microbiota that mediates its effects by modulating myeloid-derived cell functions in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment.


Subject(s)
Intestines/microbiology , Microbiota/physiology , Neoplasms/immunology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Anti-Bacterial Agents/administration & dosage , Antigen Presentation/genetics , Antineoplastic Agents/therapeutic use , Bacteria/drug effects , Bacterial Physiological Phenomena/drug effects , Down-Regulation , Gene Expression Regulation , Germ-Free Life , Immunotherapy , Inflammation/genetics , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Microbiota/drug effects , Neoplasm Transplantation , Neoplasms/microbiology , Oligodeoxyribonucleotides/therapeutic use , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Phagocytosis/genetics , Reactive Oxygen Species/metabolism , Symbiosis , Tumor Necrosis Factor-alpha/metabolism
8.
Nature ; 491(7423): 254-8, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23034650

ABSTRACT

Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of ß-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, 'inflammatory signature' genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as 'tumour-elicited inflammation'. Although infiltrating CD4(+) T(H)1 cells and CD8(+) cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (T(H)17) cells promote tumorigenesis, and a 'T(H)17 expression signature' in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.


Subject(s)
Adenoma/microbiology , Adenoma/pathology , Cell Transformation, Neoplastic/pathology , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Interleukin-17/immunology , Interleukin-23/immunology , Adenoma/genetics , Adenoma/immunology , Animals , Bacteria/metabolism , Bacteria/pathogenicity , Cell Division , Colitis/complications , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Disease Models, Animal , Disease-Free Survival , Genes, APC , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Interleukin-17/genetics , Interleukin-23/deficiency , Interleukin-23/genetics , Mice , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , Tumor Microenvironment , beta Catenin/metabolism
9.
Mol Ther ; 20(6): 1242-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22434135

ABSTRACT

Interleukin-10 (IL-10) is a key suppressor of inflammation in chronic infections and in cancer. In mice, the inability of the immune system to clear viral infections or inhibit tumor growth can be reversed by antibody-mediated blockade of IL-10 action. We used a modified selection protocol to isolate RNA-based, nuclease-resistant, aptamers that bind to the murine IL-10 receptor. After 5 rounds of selection high-throughput sequencing (HTS) was used to analyze the library. Using distribution statistics on about 11 million sequences, aptamers were identified which bound to IL-10 receptor in solution with low K(d). After 12 rounds of selection the predominant IL-10 receptor-binding aptamer identified in the earlier rounds remained, whereas other high-affinity aptamers were not detected. Prevalence of certain nucleotide (nt) substitutions in the sequence of a high-affinity aptamer present in round 5 was used to deduce its secondary structure and guide the truncation of the aptamer resulting in a shortened 48-nt long aptamer with increased affinity. The aptamer also bound to IL-10 receptor on the cell surface and blocked IL-10 function in vitro. Systemic administration of the truncated aptamer was capable of inhibiting tumor growth in mice to an extent comparable to that of an anti- IL-10 receptor antibody.


Subject(s)
Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/isolation & purification , High-Throughput Nucleotide Sequencing , Receptors, Interleukin-10/antagonists & inhibitors , Animals , Aptamers, Nucleotide/metabolism , Aptamers, Nucleotide/pharmacology , Base Sequence , Cell Line, Tumor , Cell Membrane/metabolism , Cell Proliferation/drug effects , Female , High-Throughput Screening Assays , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Neoplasms/metabolism , Nucleic Acid Conformation , Protein Binding , Receptors, Interleukin-10/metabolism , Signal Transduction
10.
Immunity ; 34(4): 460-2, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21511180

ABSTRACT

In this issue of Immunity, Chaudhry et al. (2011) and Huber et al. (2011) report that control of Th17 cell responses during colonic inflammation requires direct signaling by IL-10 in regulatory T cells and Th17 cells.

11.
Cancer Cell ; 15(2): 81-3, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19185840

ABSTRACT

STAT3 plays many roles in tumorigenesis. In this issue of Cancer Cell, Kortylewski et al. show that in the tumor microenvironment, STAT3 enhances the expression of the protumor cytokine IL-23 in macrophages but inhibits the antitumor cytokine IL-12 in dendritic cells. STAT3 also mediates IL-23's effect of activating tumor-infiltrating regulatory T cells.


Subject(s)
Immunosuppression Therapy , Interleukin-23/immunology , Neoplasms/immunology , STAT3 Transcription Factor/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Interleukin-12/immunology , Lymphocyte Activation/immunology
12.
J Immunol ; 181(1): 39-46, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18566368

ABSTRACT

Immunogenetic studies suggest that interactions between maternal killer Ig-like receptor (KIR) expressed by uterine NK (uNK) cells, and fetal HLA-C molecules on trophoblast, influence the success of human placentation. However, the exact functional response of fresh uNK cells to trophoblast HLA-C molecules is unknown. In this study, we show by quantitative RT-PCR and FACS that both activating and inhibitory KIR specific for HLA-C are expressed at higher levels and on an increased proportion of NK cells in the human decidua compared with blood. In contrast, expression of KIR3DL1/S1, which is specific for HLA-B, is similar in both NK cell populations. Remarkably, there is also a temporal change in the expression pattern of HLA-C-specific KIR, with a decline in both intensity of expression and frequency on uNK cells throughout the first trimester of pregnancy. This selective up-regulation of KIR has functional consequences because uNK cells show increased binding of HLA-C tetramers compared with blood NK cells. Ab cross-linking shows that these KIR are functional and results in increased cytokine secretion. uNK cells, therefore, exhibit a unique KIR profile that enhances their ability to recognize trophoblast cells expressing HLA-C at the materno-fetal interface. This is the first report to demonstrate selective regulation of KIR expression over time in vivo in a normal physiological situation and suggests that KIR expression by uNK cells is regulated by the tissue microenvironment in the decidua.


Subject(s)
Gestational Age , HLA-C Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR/immunology , Uterus/immunology , Cross Reactions/immunology , Decidua/metabolism , Female , Humans , Pregnancy , Pregnancy Trimester, First/immunology , Protein Binding , Receptors, KIR/genetics , Receptors, KIR/metabolism , Transcription, Genetic/genetics , Trophoblasts/metabolism , Uterus/metabolism
13.
Immunogenetics ; 60(1): 1-18, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18193213

ABSTRACT

The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine.


Subject(s)
Databases, Genetic , Genetic Variation/immunology , HLA Antigens/genetics , Haplotypes/genetics , Terminology as Topic , Computational Biology/methods , Computational Biology/trends , Genome, Human , Humans
14.
Immunity ; 25(2): 331-42, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16901727

ABSTRACT

Natural killer (NK) cells recognize the absence of self MHC class I as a way to discriminate normal cells from cells in distress. In humans, this "missing self" recognition is ensured by inhibitory receptors such as KIR, which dampen NK cell activation upon interaction with their MHC class I ligands. We show here that NK cells lacking inhibitory KIR for self MHC class I molecules are present in human peripheral blood. These cells harbor a mature NK cell phenotype but are hyporesponsive to various stimuli, including MHC class I-deficient target cells. This response is in contrast to NK cells that express a single inhibitory KIR specific for self MHC class I, which are functionally competent when exposed to the same stimuli. These results show the involvement of KIR-MHC class I interactions in the calibration of NK cell effector capacities, suggesting its role in the subsequent "missing self" recognition.


Subject(s)
Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Receptors, Immunologic/immunology , Animals , Cell Line , Heterozygote , Humans , Mice , Phenotype , Receptors, KIR , Receptors, Natural Killer Cell
15.
PLoS Genet ; 2(1): e9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16440057

ABSTRACT

The major histocompatibility complex (MHC) is recognised as one of the most important genetic regions in relation to common human disease. Advancement in identification of MHC genes that confer susceptibility to disease requires greater knowledge of sequence variation across the complex. Highly duplicated and polymorphic regions of the human genome such as the MHC are, however, somewhat refractory to some whole-genome analysis methods. To address this issue, we are employing a bacterial artificial chromosome (BAC) cloning strategy to sequence entire MHC haplotypes from consanguineous cell lines as part of the MHC Haplotype Project. Here we present 4.25 Mb of the human haplotype QBL (HLA-A26-B18-Cw5-DR3-DQ2) and compare it with the MHC reference haplotype and with a second haplotype, COX (HLA-A1-B8-Cw7-DR3-DQ2), that shares the same HLA-DRB1, -DQA1, and -DQB1 alleles. We have defined the complete gene, splice variant, and sequence variation contents of all three haplotypes, comprising over 259 annotated loci and over 20,000 single nucleotide polymorphisms (SNPs). Certain coding sequences vary significantly between different haplotypes, making them candidates for functional and disease-association studies. Analysis of the two DR3 haplotypes allowed delineation of the shared sequence between two HLA class II-related haplotypes differing in disease associations and the identification of at least one of the sites that mediated the original recombination event. The levels of variation across the MHC were similar to those seen for other HLA-disparate haplotypes, except for a 158-kb segment that contained the HLA-DRB1, -DQA1, and -DQB1 genes and showed very limited polymorphism compatible with identity-by-descent and relatively recent common ancestry (<3,400 generations). These results indicate that the differential disease associations of these two DR3 haplotypes are due to sequence variation outside this central 158-kb segment, and that shuffling of ancestral blocks via recombination is a potential mechanism whereby certain DR-DQ allelic combinations, which presumably have favoured immunological functions, can spread across haplotypes and populations.


Subject(s)
Evolution, Molecular , Haplotypes/genetics , Major Histocompatibility Complex , Chromosome Mapping , Chromosomes, Artificial, Bacterial , Cloning, Molecular , Genetic Variation , HLA-DR Antigens/genetics , Humans , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA
16.
Proc Natl Acad Sci U S A ; 102(37): 13224-9, 2005 Sep 13.
Article in English | MEDLINE | ID: mdl-16141329

ABSTRACT

Inhibitory receptors for MHC class I molecules increase the threshold of lymphocyte activation. Natural Killer (NK) cells express a large number of such inhibitory receptors, including the human killer Ig-like receptors (KIR). However, activating members of the KIR family have poorly defined ligands and functions. Here we describe the use of activating KIR tetramer reagents as probes to detect their ligands. Infection of cells with Epstein-Barr virus leads to expression of a detectable ligand for the activating receptor KIR2DS1. In this case, KIR2DS1 interacts with up-regulated peptide-MHC class I complexes on Epstein-Barr virus-infected cells in a transporter associated with antigen processing (TAP)-dependent manner. In tetramer-based cellular assays and direct affinity measurements, this interaction with MHC class I is facilitated by a broad spectrum of peptides. KIR2DS1 and its inhibitory homologue, KIR2DL1, share sensitivity to peptide sequence alterations at positions 7 and 8. These results fit a model in which activating and inhibitory receptors recognize the same sets of self-MHC class I molecules, differing only in their binding affinities. Importantly, KIR2DS1 is not always sufficient to trigger NK effector responses when faced with cognate ligand, consistent with fine control during NK cell activation. We discuss how our results for KIR2DS1 and parallel studies on KIR2DS2 relate to the association between activating KIR genes and susceptibility to autoimmune disorders.


Subject(s)
Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Peptide Fragments/immunology , Receptors, Immunologic/immunology , ATP-Binding Cassette Transporters , Autoimmune Diseases/etiology , HLA Antigens/immunology , Herpesvirus 4, Human/immunology , Histocompatibility Antigens Class I/metabolism , Humans , Ligands , Peptide Fragments/metabolism , Protein Binding , Receptors, Immunologic/metabolism , Receptors, KIR , Receptors, KIR2DL1 , Viral Proteins/immunology
17.
Eur J Immunol ; 35(7): 2191-9, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15940669

ABSTRACT

Killer Ig-like receptors (KIR) are important for the recognition and elimination of diseased cells by human NK cells. Myeloid leukemia patients given a hematopoietic stem cell transplantation, for example, benefit from KIR-mediated NK alloreactivity directed against the leukemia cells. To establish an effective NK cell repertoire, most KIR genes are expressed stochastically, independently of the others. However, the sequences upstream of the coding regions of these KIR genes are highly homologous to the recently identified KIR3DL1 promoter (91.1-99.6% sequence identity), suggesting that they are regulated by similar if not identical mechanisms of transcriptional activation. We investigated the effects of small sequence differences between the KIR3DL1 promoter and other KIR promoters on transcription factor binding and promoter activity. Surprisingly, electrophoretic mobility shift assays and promoter-reporter assays revealed significant structural and functional differences in the cis-acting elements of these highly homologous KIR promoters, suggesting a key role for transcription factors in independent control of expression of specific KIR loci. Thus, the KIR repertoire may be shaped by a combination of both gene-specific and stochastic mechanisms.


Subject(s)
Gene Expression Regulation/immunology , Killer Cells, Natural/metabolism , Promoter Regions, Genetic , Receptors, Immunologic/biosynthesis , Base Sequence , DNA Footprinting , Electrophoretic Mobility Shift Assay , Humans , Jurkat Cells , Killer Cells, Natural/immunology , Molecular Sequence Data , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Receptors, KIR , Receptors, KIR3DL1 , Sequence Alignment , Structure-Activity Relationship , Transfection
18.
Genome Res ; 14(6): 1176-87, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15140828

ABSTRACT

The future systematic mapping of variants that confer susceptibility to common diseases requires the construction of a fully informative polymorphism map. Ideally, every base pair of the genome would be sequenced in many individuals. Here, we report 4.75 Mb of contiguous sequence for each of two common haplotypes of the major histocompatibility complex (MHC), to which susceptibility to >100 diseases has been mapped. The autoimmune disease-associated-haplotypes HLA-A3-B7-Cw7-DR15 and HLA-A1-B8-Cw7-DR3 were sequenced in their entirety through a bacterial artificial chromosome (BAC) cloning strategy using the consanguineous cell lines PGF and COX, respectively. The two sequences were annotated to encompass all described splice variants of expressed genes. We defined the complete variation content of the two haplotypes, revealing >18,000 variations between them. Average SNP densities ranged from less than one SNP per kilobase to >60. Acquisition of complete and accurate sequence data over polymorphic regions such as the MHC from large-insert cloned DNA provides a definitive resource for the construction of informative genetic maps, and avoids the limitation of chromosome regions that are refractory to PCR amplification.


Subject(s)
Autoimmune Diseases/genetics , Chromosome Mapping/methods , Genetic Predisposition to Disease/genetics , Haplotypes/genetics , Major Histocompatibility Complex/genetics , Cell Line , Chromosome Mapping/statistics & numerical data , Chromosomes, Artificial, Bacterial/genetics , Consanguinity , Genes/genetics , Genetic Variation , Genome, Human , HLA-A1 Antigen/genetics , HLA-A3 Antigen/genetics , HLA-B8 Antigen/genetics , HLA-C Antigens/genetics , HLA-DR3 Antigen/genetics , Humans , Linkage Disequilibrium/genetics , Polymorphism, Genetic/genetics , White People/genetics
19.
J Immunol ; 170(12): 6073-81, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-12794136

ABSTRACT

The killer Ig-like receptors (KIR) are a family of highly related MHC class I receptors that show extreme genetic polymorphism both within the human population and between closely related primate species, suggestive of rapid evolutionary diversification. Most KIR are expressed in a variegated fashion by the NK population, giving rise to an NK repertoire of specificities for MHC class I. We compared the promoter for KIR3DL1, which exhibits variegated gene expression, with that for KIR2DL4, which is expressed by all NK cell clones. Maximum transcriptional activity of each was encoded within approximately 270 bp upstream of the translation initiation codon. The KIR2DL4 promoter drove reporter gene expression only in NK cells, while the KIR3DL1 promoter was active in a range of cell types, suggesting that the latter requires other regulatory elements for physiological expression. In NK cells, reporter gene expression driven by the KIR2DL4 promoter was greater than that driven by the KIR3DL1 promoter. DNase I footprinting revealed that transcription factor binding sites differ between the two promoters. The data indicate that while the promoters of these two KIR genes share 67% nucleotide identity, they have evolved distinct properties consistent with different roles in regulating the generation of NK repertoire.


Subject(s)
Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Promoter Regions, Genetic/immunology , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Base Composition , Base Sequence , Binding Sites/genetics , Binding Sites/immunology , Cell Line , Codon, Initiator/genetics , Codon, Initiator/metabolism , Humans , Jurkat Cells , K562 Cells , Molecular Sequence Data , Multigene Family/immunology , Organ Specificity/genetics , Organ Specificity/immunology , Receptors, Immunologic/biosynthesis , Receptors, KIR , Receptors, KIR2DL4 , Receptors, KIR3DL1 , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation Site , Tumor Cells, Cultured
20.
J Exp Med ; 197(2): 245-55, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12538663

ABSTRACT

Killer immunoglobulin-like receptors (KIR) bind self-major histocompatibility complex class I molecules, allowing natural killer (NK) cells to recognize aberrant cells that have down-regulated class I. NK cells express variable numbers and combinations of highly homologous clonally restricted KIR genes, but uniformly express KIR2DL4. We show that NK clones express both 2DL4 alleles and either one or both alleles of the clonally restricted KIR 3DL1 and 3DL2 genes. Despite allele-independent expression, 3DL1 alleles differed in the core promoter by only one or two nucleotides. Allele-specific 3DL1 gene expression correlated with promoter and 5' gene DNA hypomethylation in NK cells in vitro and in vivo. The DNA methylase inhibitor, 5-aza-2'-deoxycytidine, induced KIR DNA hypomethylation and heterogeneous expression of multiple KIR genes. Thus, NK cells use DNA methylation to maintain clonally restricted expression of highly homologous KIR genes and alleles.


Subject(s)
DNA Methylation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Immunologic/genetics , Alleles , Cell Line , Clone Cells , Gene Expression , Histocompatibility Antigens Class I/metabolism , Humans , Receptors, KIR , Receptors, KIR2DL4 , Receptors, KIR3DL1 , Receptors, KIR3DL2
SELECTION OF CITATIONS
SEARCH DETAIL
...