Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
AMB Express ; 14(1): 66, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842656

ABSTRACT

Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.

2.
J Photochem Photobiol B ; 255: 112922, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677260

ABSTRACT

Chemical and UV light-based pathogen reduction technologies are currently in use for human platelet concentrates (PCs) to enhance safety from transfusion-transmitted infections. Relative to UV light, 405 nm violet-blue light in the visible spectrum is known to be less harmful. Hence, in this report for the first time, we have assessed the global hemostasis activity of PCs stored in plasma and the activities of six plasma coagulation factors (CFs) as a measure of in vitro hemostatic activity following exposure to the microbicidal 405 nm light. Apheresis PC samples collected from each screened human donor (n = 22) were used for testing of PCs and platelet poor plasma (PPP). Both PCs and PPPs were treated for 5 h with 405 nm light to achieve a previously established microbicidal light dose of 270 J/cm2. Activated partial thromboplastin time and prothrombin time-based potency assays using a coagulation analyzer and hemostatic capacity via Thromboelastography were analyzed. Thromboelastography analysis of the light-treated PCs and plasma present in the PCs showed little difference between the treated and untreated samples. Further, plasma present in the PCs during the light treatment demonstrated a better stability in potency assays for several coagulation factors compared to the plasma alone prepared from PCs first and subjected to the light treatment separately. Overall, PCs stored in plasma treated with 405 nm violet-blue light retain activity for hemostasis.


Subject(s)
Blood Platelets , Hemostasis , Ultraviolet Rays , Humans , Blood Platelets/radiation effects , Hemostasis/radiation effects , Thrombelastography , Light , Partial Thromboplastin Time , Prothrombin Time , Blood Coagulation/radiation effects , Blood Coagulation/drug effects , Blood Coagulation Factors/metabolism
3.
Photochem Photobiol ; 98(2): 504-512, 2022 03.
Article in English | MEDLINE | ID: mdl-34935147

ABSTRACT

In transfusion medicine, bacterial contamination can occur in ex vivo stored blood plasma, and there are continued efforts to improve blood safety and reduce the risk of transfusion-transmitted infections. Visible 405-nm violet-blue light has demonstrated potential for in situ pathogen reduction in ex vivo stored plasma and platelet concentrates. This study investigates the broad-spectrum antibacterial efficacy and compatibility potential of 405-nm light for treatment of blood plasma. Human plasma seeded with bacteria at a range of densities (101 -103 , 104 -106 , 107 -108 CFU mL-1 ) was exposed to 360 J cm-2 405-nm light (1 h at 0.1 W cm-2 ), with this fixed dose selected based on the initial analysis of inactivation kinetics. One-dimensional protein mobility analysis and measurement of advanced oxidation protein products (AOPP) was conducted to evaluate compatibility of the antimicrobial dose with plasma proteins and, identify upper levels at which protein degradation can be detected. Broad-spectrum antibacterial efficacy was observed with a fixed treatment of 360 J cm-2 , with 98.9-100% inactivation achieved across all seeding densities for all organisms, except E. coli, which achieved 95.1-100% inactivation. At this dose (360 J cm-2 ), no signs of protein degradation occurred. Overall, 405-nm light shows promise for broad-spectrum bacterial inactivation in blood plasma, while preserving plasma protein integrity.


Subject(s)
Escherichia coli , Light , Anti-Bacterial Agents/pharmacology , Bacteria , Blood Proteins , Humans , Plasma
4.
Front Med (Lausanne) ; 7: 617373, 2020.
Article in English | MEDLINE | ID: mdl-33330577

ABSTRACT

The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm-2 for 5 h, equivalent to 270 Jcm-2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.

5.
Front Med (Lausanne) ; 6: 331, 2019.
Article in English | MEDLINE | ID: mdl-32010702

ABSTRACT

Bacterial contamination of ex vivo stored platelets is a cause of transfusion-transmitted infection. Violet-blue 405 nm light has recently demonstrated efficacy in reducing the bacterial burden in blood plasma, and its operational benefits such as non-ionizing nature, penetrability, and non-requirement for photosensitizing agents, provide a unique opportunity to develop this treatment for in situ treatment of ex vivo stored platelets as a tool for bacterial reduction. Sealed bags of platelet concentrates, seeded with low-level Staphylococcus aureus contamination, were 405 nm light-treated (3-10 mWcm-2) up to 8 h. Antimicrobial efficacy and dose efficiency was evaluated by quantification of the post-treatment surviving bacterial contamination levels. Platelets treated with 10 mWcm-2 for 8 h were further evaluated for survival and recovery in severe combined immunodeficient (SCID) mice. Significant inactivation of bacteria in platelet concentrates was achieved using all irradiance levels, with 99.6-100% inactivation achieved by 8 h (P < 0.05). Analysis of applied dose demonstrated that lower irradiance levels generally resulted in significant decontamination at lower doses: 180 Jcm-2/10 mWcm-2 (P = 0.008) compared to 43.2 Jcm-2/3 mWcm-2 (P = 0.002). Additionally, the recovery of light-treated platelets, compared to non-treated platelets, in the murine model showed no significant differences (P = >0.05). This report paves the way for further comprehensive studies to test 405 nm light treatment as a bactericidal technology for stored platelets.

SELECTION OF CITATIONS
SEARCH DETAIL
...