Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
3.
Front Microbiol ; 15: 1398018, 2024.
Article in English | MEDLINE | ID: mdl-38680911

ABSTRACT

Clostridioides difficile infection (CDI) is responsible for around 300,000 hospitalizations yearly in the United States, with the associated monetary cost being billions of dollars. Gut microbiome dysbiosis is known to be important to CDI. To the best of our knowledge, metatranscriptomics (MT) has only been used to characterize gut microbiome composition and function in one prior study involving CDI patients. Therefore, we utilized MT to investigate differences in active community diversity and composition between CDI+ (n = 20) and CDI- (n = 19) samples with respect to microbial taxa and expressed genes. No significant (Kruskal-Wallis, p > 0.05) differences were detected for richness or evenness based on CDI status. However, clustering based on CDI status was significant for both active microbial taxa and expressed genes datasets (PERMANOVA, p ≤ 0.05). Furthermore, differential feature analysis revealed greater expression of the opportunistic pathogens Enterocloster bolteae and Ruminococcus gnavus in CDI+ compared to CDI- samples. When only fungal sequences were considered, the family Saccharomycetaceae expressed more genes in CDI-, while 31 other fungal taxa were identified as significantly (Kruskal-Wallis p ≤ 0.05, log(LDA) ≥ 2) associated with CDI+. We also detected a variety of genes and pathways that differed significantly (Kruskal-Wallis p ≤ 0.05, log(LDA) ≥ 2) based on CDI status. Notably, differential genes associated with biofilm formation were expressed by C. difficile. This provides evidence of another possible contributor to C. difficile's resistance to antibiotics and frequent recurrence in vivo. Furthermore, the greater number of CDI+ associated fungal taxa constitute additional evidence that the mycobiome is important to CDI pathogenesis. Future work will focus on establishing if C. difficile is actively producing biofilms during infection and if any specific fungal taxa are particularly influential in CDI.

6.
Open Forum Infect Dis ; 9(3): ofac001, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146046

ABSTRACT

BACKGROUND: The incidence of Clostridioides difficile infection (CDI) has increased over the past 2 decades and is considered an urgent threat by the Centers for Disease Control and Prevention. Hypervirulent strains such as ribotype 027, which possess genes for the additional toxin C. difficile binary toxin (CDT), are contributing to increased morbidity and mortality. METHODS: We retrospectively tested stool from 215 CDI patients for CDT by enzyme-linked immunosorbent assay (ELISA). Stratifying patients by CDT status, we assessed if disease severity and clinical outcomes correlated with CDT positivity. Additionally, we completed quantitative PCR (PCR) DNA extracted from patient stool to detect cdtB gene. Lastly, we performed 16 S rRNA gene sequencing to examine if CDT-positive samples had an altered fecal microbiota. RESULTS: We found that patients with CdtB, the pore-forming component of CDT, detected in their stool by ELISA, were more likely to have severe disease with higher 90-day mortality. CDT-positive patients also had higher C. difficile bacterial burden and white blood cell counts. There was no significant difference in gut microbiome diversity between CDT-positive and -negative patients. CONCLUSIONS: Patients with fecal samples that were positive for CDT had increased disease severity and worse clinical outcomes. Utilization of PCR and testing for C. difficile toxins A and B may not reveal the entire picture when diagnosing CDI; detection of CDT-expressing strains is valuable in identifying patients at risk of more severe disease.

9.
JAMA Surg ; 156(12): 1158-1159, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34613353
10.
Am J Gastroenterol ; 116(6): 1124-1147, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34003176

ABSTRACT

Clostridioides difficile infection occurs when the bacterium produces toxin that causes diarrhea and inflammation of the colon. These guidelines indicate the preferred approach to the management of adults with C. difficile infection and represent the official practice recommendations of the American College of Gastroenterology. The scientific evidence for these guidelines was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation process. In instances where the evidence was not appropriate for Grading of Recommendations Assessment, Development, and Evaluation but there was consensus of significant clinical merit, key concept statements were developed using expert consensus. These guidelines are meant to be broadly applicable and should be viewed as the preferred, but not the only, approach to clinical scenarios.


Subject(s)
Clostridium Infections , Anti-Bacterial Agents/therapeutic use , Clostridioides difficile/isolation & purification , Clostridium Infections/diagnosis , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control , Diarrhea/drug therapy , Diarrhea/microbiology , Diarrhea/prevention & control , Humans , Inflammation/drug therapy , Inflammation/microbiology , Inflammation/prevention & control , Recurrence
14.
Urol Oncol ; 38(7): 615-621, 2020 07.
Article in English | MEDLINE | ID: mdl-32414567

ABSTRACT

OBJECTIVES: The human microbiome has been linked to the development of several malignancies, but there is scarcity of data on the microbiome of bladder cancer patients. In this study, we analyzed microbial composition and diversity among patients with and without bladder cancer. MATERIAL AND METHODS: Samples were collected from 38 urothelial carcinoma (UC) patients and 10 noncancer controls from August 2018 to May 2019. DNA was extracted and processed for 16 S ribosomal RNA sequencing. Alpha diversity community characteristics including evenness and richness as well as beta diversity metrics were obtained. Linear discriminant analysis effect size was used to identify microbial components whose sequences were more abundant. Pairwise statistics provided quantitative assessment of significant distributions among groups. RESULTS: Thirty seven total samples contained high quality sequence data for subsequent analyses and divided into 3 cohorts: control (n = 10), muscle-invasive (n = 15) and superficial UC (n = 12). Control samples had significantly higher species evenness when compared to invasive (P = 0.031) and superficial tumors (P = 0.002). In addition, higher species richness was observed in noncancer versus cancer samples (Faith phylogenetic diversity, P < 0.05). Significantly enriched taxa were found in both control (Bacteroides, Lachnoclostridium, Burkholderiaceae) and cancer samples (Bacteroides and Faecalbacterium). CONCLUSION: Significantly decreased microbial community diversity was seen in the urine of patients with bladder cancer when compared to a noncancer group. Distinct taxa were noted suggesting unique microbial communities in the urine of bladder cancer patients.


Subject(s)
Microbiota/physiology , Urinary Bladder Neoplasms/microbiology , Urinary Bladder Neoplasms/urine , Urinary Bladder/pathology , Aged , Cohort Studies , Feasibility Studies , Female , Humans , Male , Prospective Studies
15.
Clin Colon Rectal Surg ; 33(2): 47-48, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32104155
17.
mSphere ; 4(4)2019 08 28.
Article in English | MEDLINE | ID: mdl-31462412

ABSTRACT

There has been no prior application of matched metagenomics and metatranscriptomics in Clostridioides difficile infection (CDI) evaluating the role of fungi in CDI or identifying community functions that contribute to the development of this disease. We collected diarrheal stools from 49 inpatients (18 of whom tested positive for CDI) under stringent inclusion criteria. We utilized a tiered sequencing approach to identify enriched bacterial and fungal taxa, using 16S and internal transcribed spacer (ITS) rRNA gene amplicon sequencing, with matched metagenomics and metatranscriptomics performed on a subset of the population. Distinct bacterial and fungal compositions distinguished CDI-positive and -negative patients, with the greatest differentiation between the cohorts observed based on bacterial metatranscriptomics. Bipartite network analyses demonstrated that Aspergillus and Penicillium taxa shared a strong positive relationship in CDI patients and together formed negative cooccurring relationships with several bacterial taxa, including the Oscillospira, Comamonadaceae, Microbacteriaceae, and Cytophagaceae Metatranscriptomics revealed enriched pathways in CDI patients associated with biofilm production primarily driven by Escherichia coli and Pseudomonas, quorum-sensing proteins, and two-component systems related to functions such as osmotic regulation, linoleic acid metabolism, and flagellar assembly. Differential expression of functional pathways unveiled a mechanism by which the causal dysbiosis of CDI may self-perpetuate, potentially contributing to treatment failures. We propose that CDI has a distinct fungus-associated bacteriome, and this first description of metatranscriptomics in human subjects with CDI demonstrates that inflammation, osmotic changes, and biofilm production are key elements of CDI pathophysiology.IMPORTANCE Our data suggest a potential role for fungi in the most common nosocomial bacterial infection in the United States, introducing the concept of a transkingdom interaction between bacteria and fungi in this disease. We also provide the first direct measure of microbial community function in Clostridioides difficile infection using patient-derived tissue samples, revealing antibiotic-independent mechanisms by which C. difficile infection may resist a return to a healthy gut microbiome.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/microbiology , Fungi/genetics , Gastrointestinal Microbiome , Metagenomics , Transcriptome , Adult , Aged , Aged, 80 and over , Biofilms , Diarrhea/microbiology , Feces/microbiology , Humans , Metabolic Networks and Pathways , Middle Aged , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...