Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Stat Data Anal ; 152: 107029, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32834264

ABSTRACT

A class of random graph models is considered, combining features of exponential-family models and latent structure models, with the goal of retaining the strengths of both of them while reducing the weaknesses of each of them. An open problem is how to estimate such models from large networks. A novel approach to large-scale estimation is proposed, taking advantage of the local structure of such models for the purpose of local computing. The main idea is that random graphs with local dependence can be decomposed into subgraphs, which enables parallel computing on subgraphs and suggests a two-step estimation approach. The first step estimates the local structure underlying random graphs. The second step estimates parameters given the estimated local structure of random graphs. Both steps can be implemented in parallel, which enables large-scale estimation. The advantages of the two-step estimation approach are demonstrated by simulation studies with up to 10,000 nodes and an application to a large Amazon product recommendation network with more than 10,000 products.

2.
Am J Hum Genet ; 95(4): 345-59, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25242496

ABSTRACT

Most new mutations are observed to arise in fathers, and increasing paternal age positively correlates with the risk of new variants. Interestingly, new mutations in X-linked recessive disease show elevated familial recurrence rates. In male offspring, these mutations must be inherited from mothers. We previously developed a simulation model to consider parental mosaicism as a source of transmitted mutations. In this paper, we extend and formalize the model to provide analytical results and flexible formulas. The results implicate parent of origin and parental mosaicism as central variables in recurrence risk. Consistent with empirical data, our model predicts that more transmitted mutations arise in fathers and that this tendency increases as fathers age. Notably, the lack of expansion later in the male germline determines relatively lower variance in the proportion of mutants, which decreases with paternal age. Subsequently, observation of a transmitted mutation has less impact on the expected risk for future offspring. Conversely, for the female germline, which arrests after clonal expansion in early development, variance in the mutant proportion is higher, and observation of a transmitted mutation dramatically increases the expected risk of recurrence in another pregnancy. Parental somatic mosaicism considerably elevates risk for both parents. These findings have important implications for genetic counseling and for understanding patterns of recurrence in transmission genetics. We provide a convenient online tool and source code implementing our analytical results. These tools permit varying the underlying parameters that influence recurrence risk and could be useful for analyzing risk in diverse family structures.


Subject(s)
Gametogenesis/genetics , Genetic Diseases, Inborn/genetics , Germ-Line Mutation/genetics , Inheritance Patterns/genetics , Models, Theoretical , Mosaicism , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , DNA Copy Number Variations/genetics , Fathers , Female , Genomics , Germ Cells/cytology , Humans , Male , Middle Aged , Mothers , Pregnancy , Recurrence , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...